Manipulating the host response to treat infections

Guest speakers: Moderator: Host: R.E.W. (Bob) Hancock, Henk P. Haagsman Neeloffer Mookherjee Astrid Pentz-Murr (GARDP)

14 January 2021

An online space to connect and support the antimicrobial discovery, research, and development community

THREE AIMS OF REVIVE:

Webinar recordings

revive.gardp.org/webinars

Antimicrobial Viewpoints

Antimicrobial Viewpoints – REVIV × +

The antibiotic R&D landscape in Japan – by Norio Ohmagari 25 November 2020

Why are new antibacterials failing as commercial products? – by Patricia A. Bradford 19 November 2020

COVID-19: Coinfection, secondary bacterial infections and AMR in India – by Venkatasubramanian Ramasubramanian 12 November 2020

Running a phase 3 trial for a new drug for gonorrhoea during the coronavirus pandemic – by Markus Heep, Esther Bettiol, Tanyaporn Wansom ... 15 October 2020

A lesson learned from COVID-19: The importance of non-inferiority (NI) trials for developing new antimicrobial agents before widespread need ...

6 October 2020

revive.gardp.org/antimicrobial-viewpoints

A

1

☆

Antimicrobial Encyclopaedia

revive.gardp.org/resources/encyclopaedia

Today's speakers

R.E.W. (Bob) Hancock UBC Killam Professor and Canada Research Chair University of British Columbia (Canada)

Henk P. Haagsman Professor of Molecular Host Defence Utrecht University (Netherlands)

Moderator: Neeloffer Mookherjee Associate Professor Departments of Internal Medicine and Immunology, University of Manitoba (Canada)

Introduction

Manipulating the Host Response to Treat Infections

Moderator:

Dr. Neeloffer Mookherjee

Associate Professor, Departments of Internal Medicine and Immunology University of Manitoba, Canada

Chair, Canadian Institutes of Health Research Sex and Gender Science in Respiratory Health

Chair, WISDOM (Women in Science: Development, Outreach and Mentoring) Manitoba, Canada

https://www.mookherjeelab.com

The Antibiotic Development Paradigm is Fractured

INCREASE IN ANTIBIOTIC RESISTANCE (NNIS 1999)

ANTIBIOTIC DISCOVERY TIMELINE

- Antibiotics are the single most successful medical intervention
- □ Dramatic increase in antibiotic resistance

 Dry pipeline; Traditional and genomicsbased approaches to antibiotic development has not worked well. Defeating Antibiotic Resistance: There is an urgent need for Alternate Strategies

A failure to address the problem of antibiotic resistance could result in:

Public Health England (Gov.UK)

More than **2.8 million** antibiotic-resistant infections occur in the United States each year, and more than **35,000 people** die as a result.

CDC

BE ANTIBIOTICS

https://www.cdc.gov

When do antibiotics fails?

- 1. Microbial Resistance (mutations/plasmids etc.)
- Chronic Infections especially biofilms: of all infections, highly resistant & associated with harmful inflammation
- Sepsis: a dysregulated host response to infection (~20-35% death rate; 1 million deaths annually)
- 4. Individuals with dysregulated immune responses and immunosuppressed: chemotherapy, immuno-suppressive disease, genetic diseases, injuries or burns.

Rarely taken into account when developing new anti-infectives

65%

are impacted by aberrant host defense response

&

Hancock, R.E.W. 2020. The critical need for alternative approaches to address antibiotic treatment failure. https://revive.gardp.org/the-critical-need-for-alternative-approaches-to-address-antibiotic-treatment-failure/

Harnessing Host Defense: Immune Modulation

- Successful therapy with help from the host's immune response
- Immune Modulation & Host Directed Therapies
 - used in antiviral and anticancer therapies

Cationic Host Defence Peptides

Veterinary Medicine

25-01-2021

REGULATION AND REPROGRAMMING OF THE INNATE IMMUNE SYSTEM AS ALTERNATIVE TO ANTIBIOTICS

Henk P. Haagsman, Maaike R. Scheenstra, Edwin J. A. Veldhuizen & Albert van Dijk

Division of Infectious Diseases & Immunology

Organisation of the presentation

- Introduction: Host Defence Peptides (HDPs)
- Cathelicidin-derived peptides: paradigms for anti-inflammatory antimicrobials
- Cathelicidin-derived peptides: immunomodulatory activities
- Antimicrobial strategies involving HDPs
- Host-directed therapy by innate immune training via epigenetic reprogramming?
- Conclusions

Innate Host Defence

- Present in all organisms
- Limited repertoire of molecules
- Rapid
- Broad specificity
- Ancient

The first line of defence against infections

Cellular defences

Neutrophils (heterophils) Macrophages, Innate Lymphoid Cells, Epithelial cells

Effector molecules

Enzymes, Host Defence Peptides, Collectins, etc.

Examples of vertebrate Host Defence Peptides

Amino acid side chains: red, hydrophobic; blue, basic; green, acidic

Mookherjee et al. Nat. Rev. Drug Discov., 2020

CATH-2 is produced by chicken heterophils

Van Dijk et al. Mol. Immunol., 2009

Salmonella enteritidis challenge of chickens results in recruitment of CATH-2 containing heterophils

Van Dijk et al. Mol. Immunol., 2009

Antimicrobial activities of HDPs

Visualisation of interactions of CATH-2 with bacteria

Fast membrane binding and permeabilisation of *E. coli* by CATH-2

Schneider et al. Sci. Rep., 2016

Fast membrane binding and permeabilisation of *S. aureus* by CATH-2

В

Antibacterial mechanisms of Cationic Host Defence Peptides

Mookherjee et al. Nat. Rev. Drug Discov., 2020

Functions of host defence peptides

Cuperus et al. Dev. Comp. Immunol., 2013

HDPs reduce the inflammatory response

Example: CATH-2 "silently" kills *P. aeruginosa in vitro* and *in vivo*

Coorens et al. Infect. Immun., 2017

HDPs increase the inflammatory response

Example: CATH-2 enhances DNA uptake by macrophages

Enhancement of TLR9 (mammals) or TLR21 (birds) activation by CpG in vaccinations

Coorens et al. J. Immunol., 2015

HDP-derived products as alternatives to antibiotics

Strategies:

- Direct administration:
 - Antimicrobial activity
 - Immunomodulatory activities
- Stimulation of endogenous production of HDPs

Host-directed therapy by increasing production of HDPs

Example: Application of histone deacetylase (HDAC) inhibitors

Induction of innate effectors in phagocytes and epithelium

Bergman et al. Front. Immunol., 2020

Immunomodulation by Cationic Host Defence Peptides

Mookherjee et al. Nat. Rev. Drug Discov., 2020

Prophylactic potency of CATH-2 and derivatives in veterinary medicine

In ovo administration (chicken embryos)

In ovo D-CATH-2 administration protects from colibacillosis

Efficacy of D-CATH-2 in a zebrafish infection model

Zebrafish embryos

Yolk injection 2.6 ng/kg D-CATH-2

Salmonella enteritidis 10-100 CFU/embryo

Schneider et al. Dev. Comp. Immunol., 2016

D-CATH-2 via embryonic route of administration

Target species	Challenge	Result	
Chicken 3 days pre-hatch	<i>E. coli</i> (i.t.) 7 days post hatch	Mortality Morbidity Bacterial load	30% 52% 93%
Chicken 3 days pre-hatch	<i>S. enteriditis</i> (s.c.) 3 days post hatch	Mortality Morbidity	50% 67%
Zebrafish 28 hpf	<i>S. enteriditis</i> 18-20 hpi	Mortality delayed	24 h

- Peptide doses in models are too low to be directly antimicrobial
- Efficacy despite 6 to 10 day 'gap' between treatment and challenge!

Amtimicrobial potency of HDPs in mammalian infection models

Presented by dr. Hancock in following presentation of this webinar

Peptide-induced innate immune memory?

Epidemiological observations of non-specific effects of vaccines

• Live vaccines induce cross-resistance

- BCG
- Measles-containing vaccines
- Oral polio vaccines
- Vaccinia against smallpox
- Inactivated vaccines induce cross-resistance
 - Diphteria-tetanus-pertussis containing vaccines
 - Hepatitis B vaccine
 - Inactivated polio vaccine

Adapted from Jensen et al. Semin. Immunol., 2016

Pathogen-associated molecules and cross-protection

Component	Source	Cross-protection	Reference
LPS (endotoxin)	G(-) bacteria	Staphylococcus aureus	Breyne (2017)
Peptidoglycan (muramyl dipeptide)	Bacteria	Toxoplasma	Krahenbuhl (1981)
Flagellin	G(-) bacteria	Streptococcus pneumoniae Rotavirus	Munoz (2010)
FimH (adhesin)	Escherichia coli	Influenza virus	Abdul-Careem (2011)
β-glucan	Fungi	S. aureus S. pneumoniae	Marakalala (2013)
Chitin	Fungi	S. aureus E. coli	Rizzetto (2016)
CpG oligonucleotide	Bacteria (synthetic)	<i>E. coli</i> Influenza virus	Ribes (2014) Jiang (2011); Norton (2010)

Adapted from Sánchez-Ramón et al. Front. Immunol., 2018

Trained immunity regulatory pathways

Mulder et al. Nat. Rev. Drug. Disc., 2019

Application of trained immunity inducers

Sánchez-Ramón et al. Front. Immunol., 2018

Applications of Host Defence Peptides

Therapeutic use:

- As immunomodulatory antimicrobials
- As adjunct to antibiotics

Prophylactic use:

- Regulation/reprogramming innate immune system in veterinary relevant species (generic protection)
- In vaccines as adjuvant

Section Molecular Host Defence

Andrea Bosso Maarten Coorens Tryntsje Cuperus Soledad Ordonez Viktoria Schneider Weidong Zhang

Albert van Dijk Martin van Eijk Marina Kraaij Maaike Scheenstra

Hanne Tjeerdsma Edwin Veldhuizen

Antibiotic Resistance. Immunomodulatory Strategies

R.E.W. (Bob) Hancock, PhD, OC UBC, Vancouver, Canada

Conflict of Interest statement: Formed 2 virtual R&D companies to enable commercial development (through partnering) of peptides and sepsis diagnostics

Antibiotic Adjuvants/Adjuncts

Alternatives to antibiotics—a pipeline portfolio review

Lloyd Czaplewski, Richard Bax, Martha Clokie, Mike Dawson, Heather Fairhead, Vincent A Fischetti, Simon Foster, Brendan F Gilmore, Robert E W Hancock, David Harper, Ian R Henderson, Kai Hilpert, Brian V Jones, Aras Kadioglu, David Knowles, Sigríður Ólafsdóttir, David Payne, Steve Projan, Sunil Shaunak, Jared Silverman, Christopher M Thomas, Trevor J Trust, Peter Warn, John H Rex

Antibiotics have saved countless lives and enabled the development in over the past 70 years. However, it is clear that the success of antibiotics with the su

Lancet Infect Dis 2016; 16: 239–51 Published Online January 12, 2016 http://dx.doi.org/10.1016/ S1473-3099(15)00466-1

Antibodies; Vaccines; Probiotics; Lysins; Wild Type and Engineered Bacteriophages; Immune Stimulation; Antimicrobial peptides; Innate Defence Regulators; Anti-biofilm Peptides

When do antibiotics fail?

- 1. Resistance (mutations/plasmids etc.)
- 2. Sepsis (~20-35% death rate; 11 million deaths annually). Dysfunctional immune response.

- 3. Chronic Infections especially biofilms (65% of all infections and very resistant). Associated with chronic inflammation.
- 4. Individuals with disturbed immune systems (chemotherapy, immuno-suppressive disease, genetic diseases, massive injuries or burns).
- Indications 2 to 4 are rarely taken into account when developing new anti-infectives

Immune Modulation

- Successful therapy against infections requires help from the host: immune response
- Immune modulation is highly used in antiviral and anticancer therapy
- Less commonly used for bacterial infections

Hancock, R.E.W., A. Nijnik and D.J. Philpott. 2012. Modulating immunity as a therapy for bacterial infections. Nature Rev. Microbiol. 10:243-254.

Immune Modulation Bacteria-based Products for Respiratory Diseases

- ▶35 placebo-controlled trials (4,060 participants) provided data in a form suitable for inclusion in the meta-analyses.
- Trial quality was generally poor and a high level of statistical heterogeneity was evident.
- By combining results, immunostimulants reduced incidence of Acute Respiratory Tract Infections by an average of 39% reduction cf. placebo.
- >No difference in adverse events was evident between placebo and treated groups.
- Utilized in Latin America and Eastern Europe
- >Many other immune modulators
- >Need to understand mechanisms

Del-Rio-Navarro BE, et al 2012. Immunostimulants for preventing respiratory tract infection in children. Cochrane Review 7:629–717.

Any immunostimulant (IS) compared with placebo for preventing respiratory tract infection in children												
Patient or population: children (age <18 years) susceptible to acute respiratory tract infections (ARTIs) Settings: outpatient Intervention: any IS Comparison: placebo												
Outcomes	Illustrative comparative risks	' (95% CI)	No of participants (studies)	Quality of the evidence (GRADE)								
	Assumed risk	Corresponding risk										
	Placebo	Any IS										
Number of ARTIs	The range of ARTIs in the con- trol group was 0.92 to 6.2	The mean Number of ARTIs in the intervention groups was 1.24 lower (0.94 to 1.54 lower)	4060 (35 studies)	$\oplus \oplus \oplus$ moderate ¹								
Percent difference in ARTIs		The mean Percent difference in ARTIs in the intervention groups was 39 lower (31.31 to 46.37 lower)	4060 (35 studies)	⊕⊕⊕ moderate ^{1,2}								
Incidence of gastrointestinal adverse events	21 per 1000	30 per 1000 (11 to 50 per 1000)	1457 (10 studies)	⊕⊕ low ^{1,3}								
Incidence of skin adverse events	3 per 1000	7 per 1000 (-8 to 14 per 1000)	1469 (10 studies)	⊕⊕ low ^{1,3}								

Luivac

Probiotics

- Use of bacteria to prevent infections
- Several mechanisms proposed, e.g. exclusion, immune modulation
- >Already used successfully

Cosseau C, Hancock REW et al. 2008. Infection and Immunity76:4163-4175.

- **As OTC medicines: S.** *salivarius* clinically proven for Strep throat, Halitosis, Chronic sore throat
- In fecal transplantation for C. difficile, and *
- Reduces sepsis $(24\% \rightarrow 15\%)$ & enterocolitis $(4.6 \rightarrow 2.5\%)$ in 10,000 premature * Very Low Birthweight Babies Denkel et al. 2015 Antimicrobial Resistance

Consortia of defined bacteria can replace normal microbiota & Infection Control 2015, 4(S1):039

New immunomodulatory peptides show broad protection in Mouse Model Infections

Also protects in animal models vs. *E. coli, Pseudomonas*, MRSA, *Salmonella, Klebsiella*, Tuberculosis; *Candida*; Pox & HSV viruses; Sterile inflammation; Malaria, Inflammatory Bowel Disease, Cystic Fibrosis (cells); LPS/hypoxia-ischemia; → Wound Healing

100

90

80

70

60

30

20

10

% Survival

10⁶ PbA

4 days (Par 3-6%)

Pyrimethamine + Chloroquine in

drinking water

018 or

IDR-1

d4,5,6

3 4 5 6

Therapeutic IDR-1018+

Anti-malarial

n = 0.034

Anti-malarial ±

Control Peptide

No Treatment

10 11 12 13

9

7 8

Davs post-infection

Lars Steinstraesser, Louis Schofield, Ariel Achtman, Bruno Rivas, Rogelio Pando, Carina Mallard, Octavio Franco

Therapeutic IDR-1018 protects vs. MDR TB lung infections

- Balb/c mice infected intratracheally with high dose 10⁶ virulent live *MTb* strain; Multi-drug Resistant (MDR) or H37Rv.
- After 2 months of infection, treatment via IT: 32 µg (~1 mg/kg) peptide every 2 days.
- Groups of 5 animals sacrificed after 4 wks of treatment and lung bacilli counted.

Bruno Rivas and Rogelio Hernandez Pando, UNA de México; PLoS One 8:e59119, 2013.

RNA-Seq and bioinformatics studies on mouse lungs are deciphering mechanisms in vivo

IDR peptides can treat sterile inflammation

Biofilms: an alternative growth state & highly resistant to most conventional antibiotics

Biofilms are found everywhere; form on surfaces and are often an adaptation to stress

- Cause >65% of all bacterial infections (clinically relevant) e.g. devices, lung, bladder, wound, oral, ears, nose & throat, skin, etc.
- Chronic infections that lead to chronic and harmful inflammation
- Highly adaptively resistant
- > No specific treatments!!

Fany

Reffeuveille

Pseudomonas aeruginosa

+ ciprofloxacin (100X MIC)

Broad Spectrum Anti-Biofilm Activity when added at 0 or 2 days of biofilm formation

Kills all ESKAPE pathogens

Broad Spectrum Anti-Biofilm Activity when added at 0 or 2 days of biofilm formation Peptides work
rapidly (3 min) vs
multispecies oral
biofilms & synergize
with EDTA &
Chlorhexidine →EDTADJK5

C2

DJK5 +EDTA in

And work on dentin biofilms (left) ↓

Cesar De la Fuente Nunez, Fany Refeuveille et al. 2014. PLoS Pathogens 10(5):e1004152; De la Fuente Nunez et al. 2015. Chemistry & Biology 22:196–205; Wang, Z, et al. 2015. PLoS One 10, e0132512.; Zhang et al. 2016. PLoS One 11: e0166997; Wang et al. 2018. J. Endodontics 44:1709-13

Anti-biofilm peptides are effective against high density infections and synergize with conventional antibiotics in vivo

Pletzer et al. 2018. PLoS Pathogens 14(6):e1007084

Random Screening for New Peptides: Spot Synthesis of Peptides using a Pipetting Robot

Solid phase synthesis (peptide array) method synthesizes peptides from C-terminus on cellulose sheets.

Structure Activity Relationships of Immune Modulation & Anti-Biofilm activities overlap

Based on lead peptides. Substituting every position with 9 most common amino acids → Identification of many peptides with better or similar activities (dark red cf. grey).

Evan Haney et al. Peptides <u>71</u>:276-85, 2015; Sci. Reports <u>8</u>:1871, 2018

Anti-biofilm

Antibiofilm ^{Si}	Substituted	1002 Sequence											
	Amino Acid	V	Q	R	W	L	Ι	۷	W	R	Ι	R	К
Cationic	R	32.9	40.5	26.8	64.1	37.8	86.7	41.9	76.8	26.8	84.7	26.8	37.6
	К	24.8	31.3	38.8	113.0	21.0	98.5	71.9	130.8	50.0	129.2	25.7	26.8
Polar, uncharged	Q	23.2	26.8	29.7	64.4	51.8	78.0	55.5	80.5	59.1	61.3	33.0	35.0
Small, Hydrophobic	G	31.7	26.0	44.0	57.8	40.9	74.1	45.9	58.3	56.3	65.0	40.3	49.7
	Α	45.1	32.2	35.2	47.8	29.7	72.0	42.2	47.5	42.4	55.4	48.1	62.6
	W	23.7	38.8	32.4	26.8	23.6	47.4	37.5	26.8	27.1	29.1	62.6	28.7
Large, Hydrophobic	v	26.8	28.4	50.7	31.4	25.1	29.5	26.8	43.8	53.1	37.0	32.1	33.0
	L	30.5	28.2	40.9	66.9	26.8	47.7	43.0	43.4	43.2	34.8	38.7	36.2
	I	36.1	29.7	37.8	37.6	16.0	26.8	26.8	31.5	47.2	26.8	33.1	34.3

	Substituted	1002 Sequence											
IVICPI	Amino Acid	V	Q	R	W	L	Ι	V	W	R	I	R	к
Cationia	R	929	2069	807	252	835	328	1317	366	807	519	807	48
Cationic	к	2793	681	522	398	962	223	271	826	410	335	800	80
Polar, uncharged	Q	845	807	403	3443	7412	3928	2360	350	2217	444	3855	68
Small,	G	2319	593	1706	6915	427	237	229	473	1616	604	513	22
Hydrophobic	Α	2076	1635	566	260	291	450	252	386	1960	884	592	42
	W	745	1655	688	807	293	309	356	807	366	1263	276	52
Large, Hydrophobic	v	807	2152	446	1730	4651	714	807	1313	386	404	466	29
	L	1438	1770	374	966	807	553	532	1524	333	527	1074	64
	I	5640	944	1612	568	2926	807	504	1067	512	807	503	25

	-	_											
IL-1β	Substituted		1002 Sequence										
	Amino Acid	۷	Q	R	W	L	Ι	v	W	R	Ι	R	К
Cationic	R	0.47	0.71	0.68	1.12	1.18	1.20	1.21	1.01	0.68	0.87	0.68	0.8
Cationic	К	0.40	0.67	0.67	1.18	1.46	1.13	1.25	1.04	0.92	0.93	0.79	0.6
Polar, uncharged	Q	0.65	0.68	0.44	1.16	1.25	1.25	1.24	1.25	1.14	0.98	0.90	0.9
Small, Hydrophobic	G	0.65	0.72	0.63	0.90	1.23	1.06	0.92	0.87	0.99	0.78	0.88	1.0
	Α	0.79	0.84	0.62	0.89	0.97	0.99	0.96	1.05	0.95	0.91	1.02	0.9
	W	0.87	0.71	0.69	0.68	0.97	0.83	0.83	0.68	0.62	0.68	0.28	1.0
Large, Hydrophobic	v	0.68	0.82	0.85	1.08	1.01	1.04	0.68	0.71	0.88	0.60	0.24	1.0
	L	1.06	1.01	0.41	0.89	0.68	0.90	0.90	0.69	0.89	0.82	0.21	0.7
	I	0.96	0.80	1.00	1.09	0.79	0.68	0.58	0.92	1.07	0.68	0.32	1.0

Chemokine induction

Antiinflammatory

Peptides work in a Human Skin Model reducing biofilms and suppressing inflammation

↑ Staphylococcus aureus ↓ Pseudomonas aeruginosa

4 sec thermal injury at 100°C

Catherine Wu. NPJ Biofilms and Microbes in press

Treating infection plus inflammation: In-vivo chronic lung/sinus infections using LESB65 in alginate

- Sinusitis very common;
 >29.2 million in USA; est. aggregated cost \$8B.
- CRS is caused by a bacterial biofilm infection of the sinus cavity that causes chronic inflammation.
- Antibiotics are used a lot but are <u>not</u> effective for CRS. No approved drugs for management of CRS.

Crispr mutant library methods reveal 185 mutant genes that are required for Salmonella infection of macrophages

New Model for finding Host-directed therapies: Human stem Cells

Human induced pluripotent Stem cell derived Macrophages (hIPSdM)

- Chlamydia is the world's leading cause of STD & preventable blindness.
- Human Chlamydia only grows in human cells; Macrophages involved in pathology
- hIPSdM provide a tractable model
- Enables study of infection genetics for essential genes/targets (Cas9/CRISPR)

Conclusions

We need new anti-infectives. Resistance is very complex. And we are not properly addressing the reasons for antibiotic failure.

>Given our dismal recent success, what if we do not discover new antibiotics?

Immune modulation as an adjunctive treatment provides significant opportunities. Not discussed - Vaccines, Therapeutic Monoclonal Antibodies

Acknowledgements: Cast of dozens of trainees, Much funding from taxpayers and companies, Many excellent collaborators

Thank you for joining us

Visit now <u>revive.gardp.org/webinars</u> to find more webinars about antimicrobial drug R&D