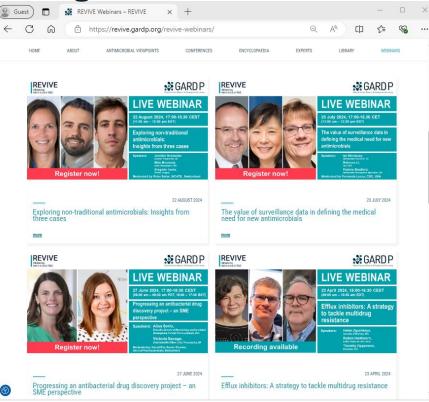
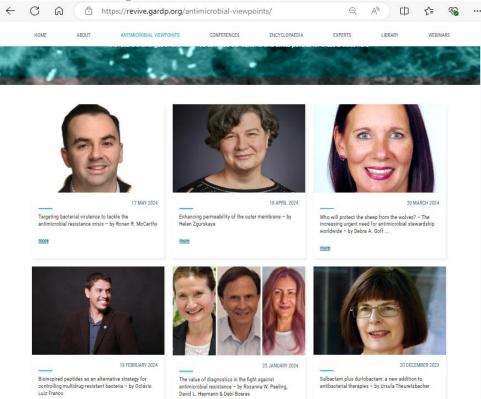
Progressing an antibacterial drug discovery project – an SME perspective

Guest speakers:Alisa Serio & Victoria SavageModerator:Daniel RitzHost:Victor Kouassi

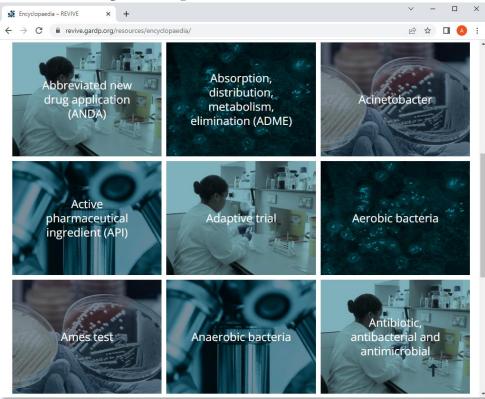
27 June 2024


Capture essential R&D technical knowledge and share expertise with the global community through the REVIVE website (revive.gardp.org).

THREE AIMS OF REVIVE:

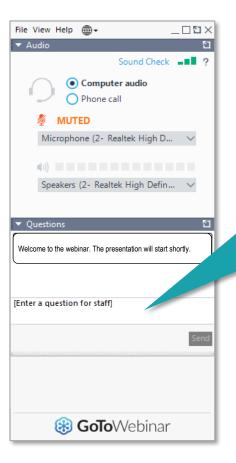


Webinar recordings


revive.gardp.org/webinars

Antimicrobial Viewpoints

revive.gardp.org/antimicrobial-viewpoints


Antimicrobial Encyclopaedia

revive.gardp.org/resources/encyclopaedia

How to submit your questions

If your question is addressed to a specific speaker, please include their name when submitting the question.

The presentation will be followed by an interactive Q&A session.

Please submit your questions via the 'questions' window. We will review all questions and respond to as many as possible after the presentation.

Today's speakers

Progressing an antibacterial drug discovery project – an SME perspective

Alisa Serio

Executive Director of Microbiology and Nonclinical Development Paratek Pharmaceuticals (USA)

Victoria Savage Chief Scientific Officer INFEX Therapeutics (UK)

Moderator & Host:

Daniel Ritz Senior Director – Senior Group Leader Biology Technologies/ Lead Discovery Idorsia Pharmaceuticals (Switzerland)

Alisa Serio

Alisa Serio is Executive Director of Microbiology and Nonclinical Development at Paratek Pharmaceuticals, Inc. She has over a decade of experience in antibacterial research and development, in particular in combating antimicrobial resistance (AMR) and has contributed to the FDA approval and commercial launch of new antibiotics as well as research activities under several US government partnerships.

Alisa received her PhD in molecular biology and microbiology from Tufts University Graduate School of Biomedical Sciences, USA and completed a postdoctoral fellowship in molecular and cell biology at the University of California, Berkeley, USA.

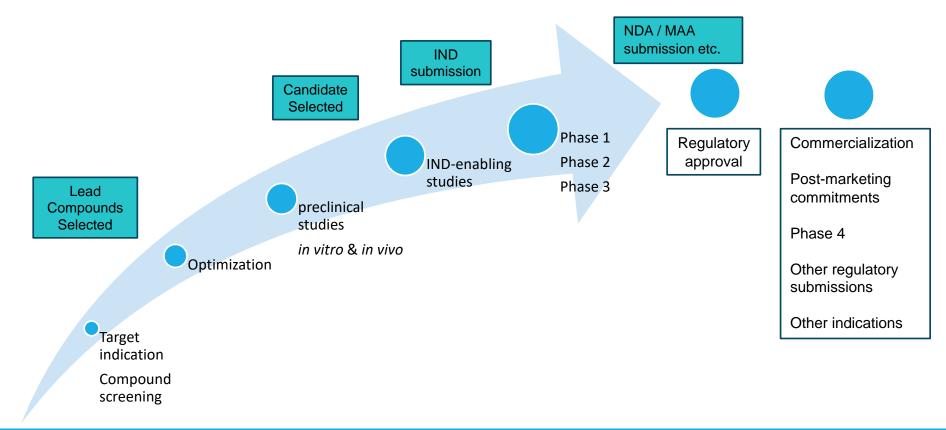
EXECUTIVE DIRECTOR OF MICROBIOLOGY AND NONCLINICAL DEVELOPMENT, PARATEK PHARMACEUTICALS INC, USA

ALISA W. SERIO, PH.D

Progressing an antibacterial discovery project – an SME Perspective

Disclaimer

The views and opinions expressed in this program are my own and do not reflect the views or positions of my employer Paratek Pharmaceuticals, Inc

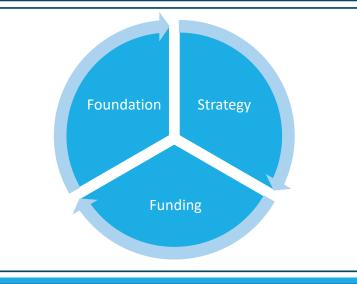

Overview of drug discovery and development process through approval & commercialization

• Key considerations

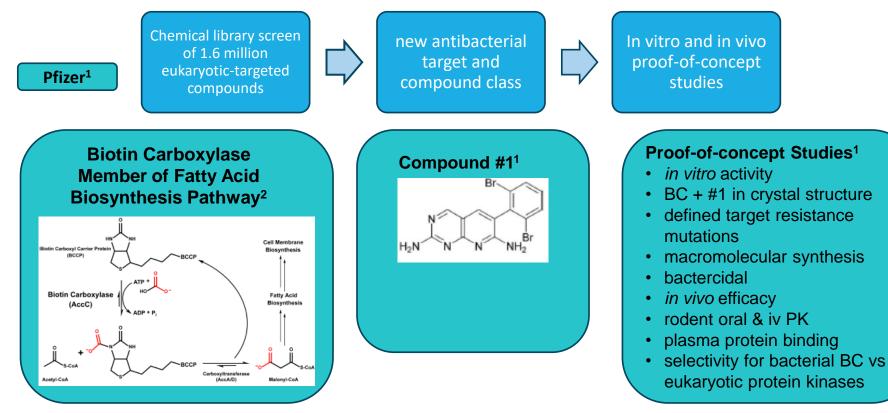
Examples of Go/No-Go Decisions and Successful Approvals

- Consideration for program origination within SMEs
- Program strategy
- How and when funding can play a role for SME programs

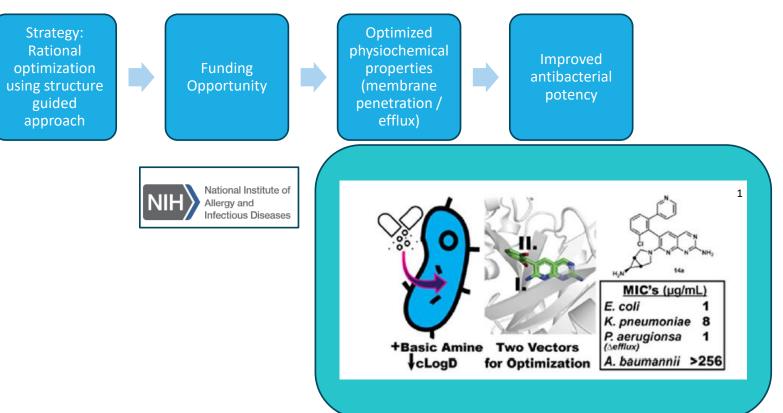
Antibacterial Drug Discovery & Development



References: 1) The Staggering Cost of Drug Development: A Look at the Numbers – GreenField Chemical Inc.; 2) Financial Innovations Lab – Milken Institute – Models for Financing Antibiotic Development to Address Antimicrobial Resistance



Programs


- Biotin carboxylase
- LpxC inhibitor
- Plazomicin
- Omadacycline

Biotin Carboxylase Inhibitor - Foundation

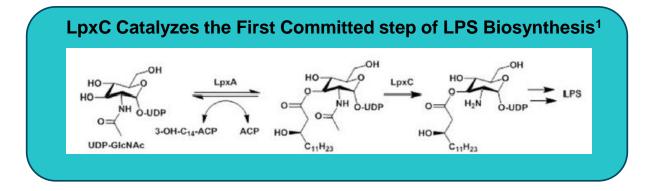
Biotin Carboxylase Inhibitor Program - Achaogen

Biotin Carboxylase Inhibitor Program - Achaogen

Go / No-Go Decision

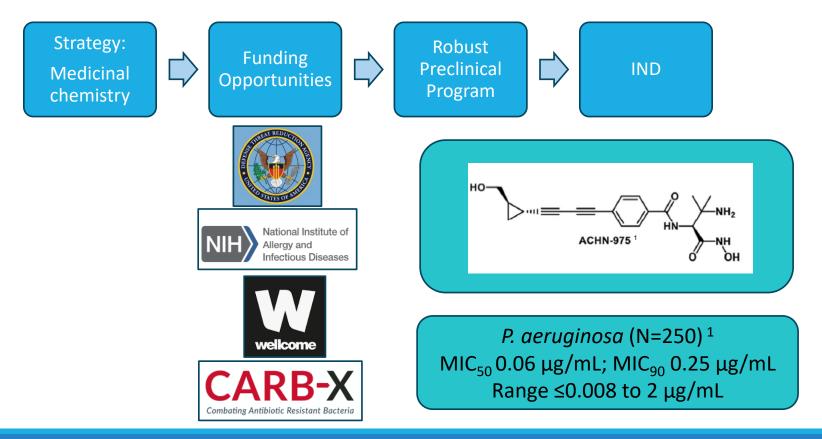
	MIC (mg L ⁻¹)		fold-change from WT			
Strain	1	14a	14e	1	14a	14e
WT background ^a	16	1	8	(1)	(1)	(1)
BC L278F	128	256	64	8	256	8
BC I437N	>128	128	64	>8	128	8
BC 1437T	>128	128	64	>8	128	8
MexT F201I	>128	2	8	>8	2	1
MexT P202L	>128	2	8	>8	2	1
MexT V226L	>128	1	8	>8	1	1
INV(muxA-mexZ)	>128	32	32	>8	32	4

^d P. aeruginosa AmexAB-oprM, AmexCD-oprJ, AmexEF-oprN[PAM1626 from Ref. 47]


Reference 1

Program Terminated: Mutants with alarmingly high MIC shifts had either mutations in biotin carboxylase target or efflux pump overexpression¹

LpxC Inhibitor - Foundation



e.g. Merck (C. Raetz), Chiron, British Biotech, Pfizer etc.²

References : 1) Cohen F et al, ChemMedChem. 2019 Aug 20;14(16):1560-1572.; 2) Erwin A. Cold Spring Harbor Perspectives in Medicine. 2016. doi:10.1101/cshperspect.a025304; 3) Barb AW et al. Curr Pharm Biotechnol 2008 Feb 9(1):9-15

LpxC Inhibitor Program 1 - Achaogen

LpxC Inhibitor Program 1 - Achaogen

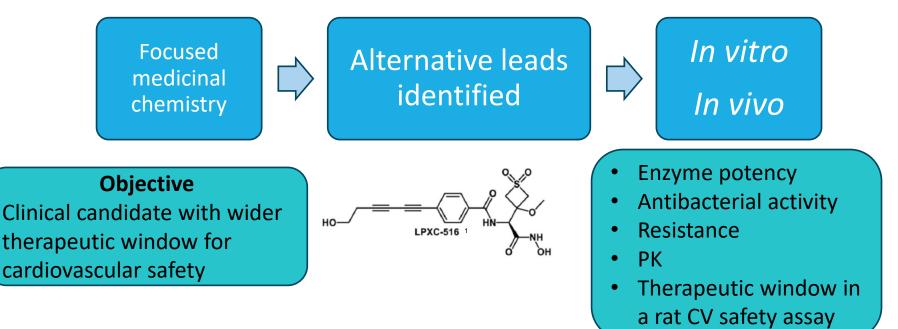
Phase 1³ ACHN-975: First-in-Human single ascending dose study

Therapeutic Window: Can a dose regimen be achieved to reduce potential for resistance / minimize toxicity?¹

References : 1) Cohen F, et al. ChemMedChem. 2019 Aug 20;14(16):1560-1572.; 2) Erwin A. Cold Spring Harbor Perspectives in Medicine. 2016. doi:10.1101/cshperspect.a025304; 3) https://clinicaltrials.gov/study/NCT01870245

LpxC Inhibitor Program 1 - Achaogen

Go / No-Go Decision #1


Phase 1 Study Terminated

- Inflammation at the injection site¹
- Cmax-driven dose-limiting toxicity of transient hypotension without tachycardia²

Next Steps

References: 1) Erwin A. Cold Spring Harbor Perspectives in Medicine. 2016. doi:10.1101/cshperspect.a025304; 2) Cohen F, et al. ChemMedChem. 2019 Aug 20;14(16):1560-1572.; 3) https://clinicaltrials.gov/study/NCT01870245

LpxC Inhibitor Program 2 - Achaogen

DTRA, NIAID, Wellcome, CARB-X

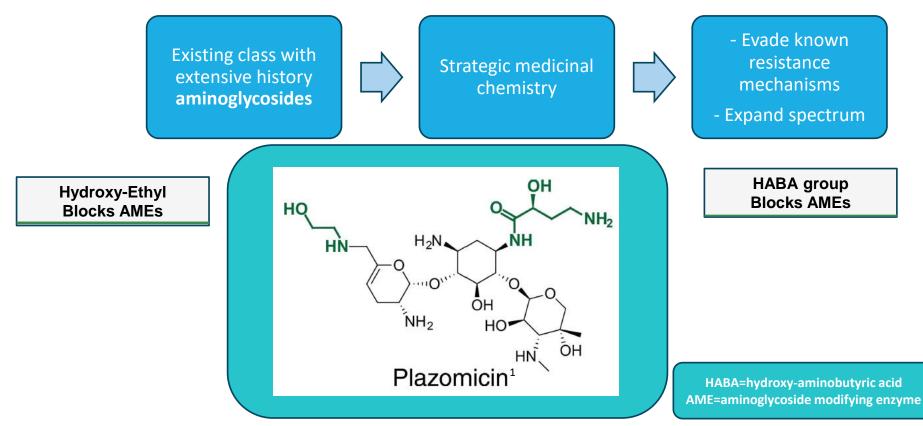
References: 1) Krause KM et al, Antimicrob Agents Chemother. 2019 Oct 22;63(11); 2) Erwin A. Cold Spring Harbor Perspectives in Medicine. 2016. doi:10.1101/cshperspect.a025304; 3) Cohen F et al, ChemMedChem. 2019 Aug 20;14(16):1560-1572; 4) https://clinicaltrials.gov/study/NCT01870245

LpxC Inhibitor Program 2 - Achaogen

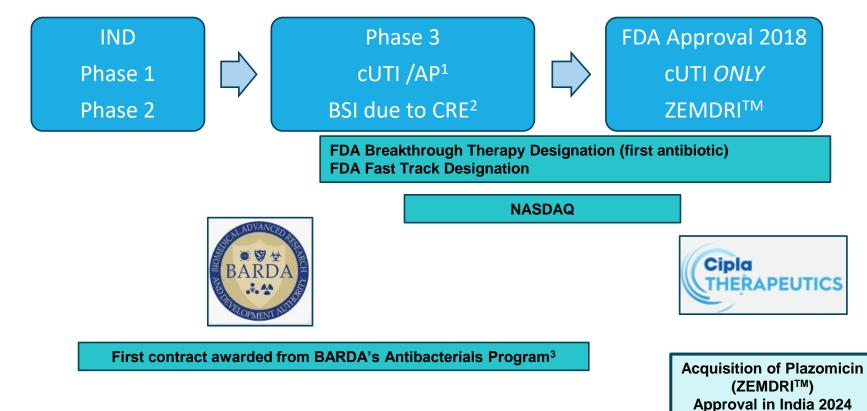
Go / No-Go Decision #2

Program Terminated

- Could not identify optimized clinical candidate with acceptable therapeutic window¹
- Resistance development and magnitude of minimum inhibitory concentration changes could not be covered²

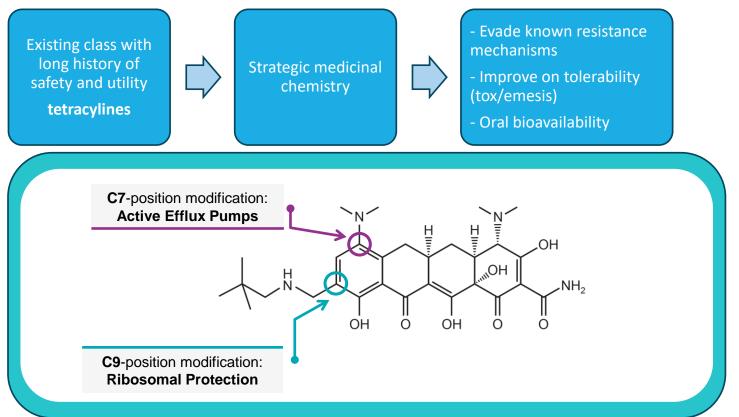

References:

Vignettes

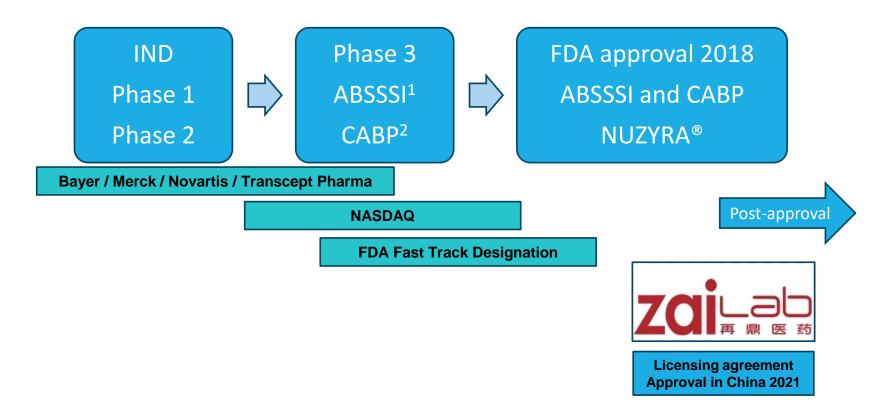

Programs

- Biotin carboxylase
- LpxC inhibitor
- Plazomicin
- Omadacycline

Plazomicin Program Foundation & Strategy - Achaogen



Plazomicin Program - Achaogen


Reference: 1) Wagenlehner FME et al; N Engl J Med. 2019 Feb 21;380(8):729-740; 2) McKinnell JA et al, N Engl J Med. 2019. Feb 21;380(8):791-793. 3) https://medicalcountermeasures.gov/barda/fdaapprovals/

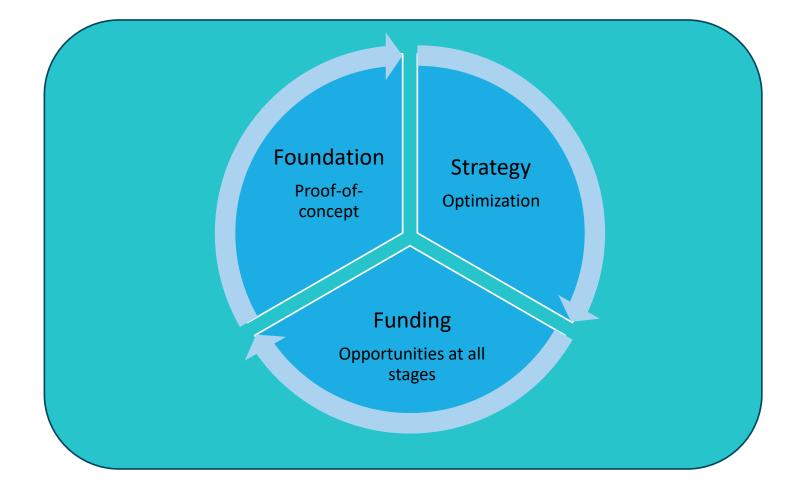
Omadacycline Program Foundation & Strategy - Paratek

Reference: 1)Honeyman L et al, Antimicrob Agents Chemother 2015 Nov; 59(11); 2) Macone AB et al, Antimicrob Agents Chemother 2014;58(2):1127-35; 3) Draper MP et al, Antimicrob Agents Chemother 2014;58(3):1279-83

Omadacycline Program - Paratek

Reference: 1)O'Riordan W et al, Lancet Infect Dis 2019 Oct;19(10):1080-1090; 2) Torres A et al; Int J Infect Dis 2021; Mar 104:501; 3) Zhanel G. et al, Drugs 2020; Feb;80(3):285-313

Omadacycline Program - Paratek



Development Programs for New Indications

Treatment and post-exposure prophylaxis of pulmonary anthrax BARDA Project Bioshield

> Non-tuberculous Mycobacteria pulmonary disease¹ FDA Orphan Designation EMA Positive Opinion Orphan Medicinal Product

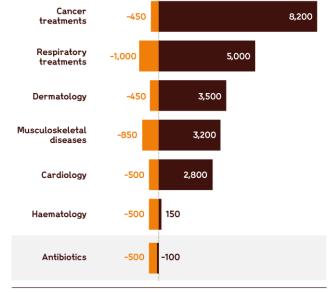
Thank you

Victoria Savage

Victoria Savage is Chief Scientific Officer of INFEX Therapeutics Ltd, an infection-focused biotechnology company developing several new therapies for drug-resistant infections based in Cheshire, UK.

She is a microbiologist with a keen interest in antimicrobial research and development and has contributed to the development of multiple antimicrobial programs, from early-stage assets through to clinical-stage projects. Victoria has experience in the development of diverse modalities including small molecules, biologics and non-traditional approaches. She gained her PhD in Microbiology and Immunology from the University of Leeds, UK and also serves on several scientific advisory committees in biological sciences.

Progressing an antibacterial discovery program – an SME perspective


Dr Victoria Savage Chief Scientific Officer, Infex Therapeutics Ltd

AMR – The Broken Market

Market Challenges Jeopardize Antibiotic Access FDA approval It takes 10-15 years and (! \$1.3 billion to develop an antibiotic. Patient access Valley of death Challenges at Market failure commercialization/once new antibiotic is approved Low potential The combined sales of Companies behind 5 of Pricing and sales volume for reimbursement all branded antibiotics the 15 new antibiotics for antibiotics is in the U.S. in 2018 was approved since 2010 newly approved antibiotics. typically low. \$535 million. have collapsed.

Antibiotics are not an economically viable investment

Profitability of different disease treatments (millions of dollars), 2014-16

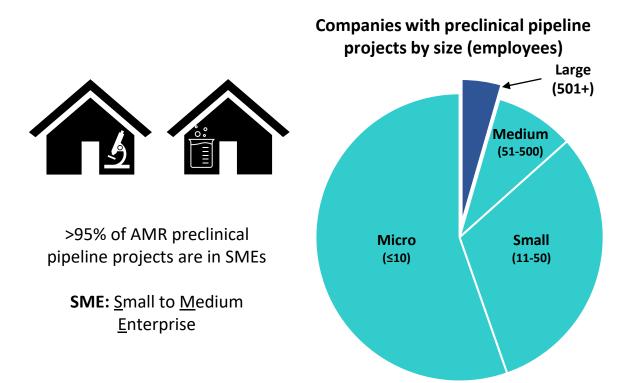
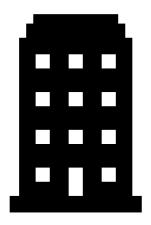

Development (\$M) Profit (\$M)

Image: Pew Charitable Trusts


Image: Wellcome Trust

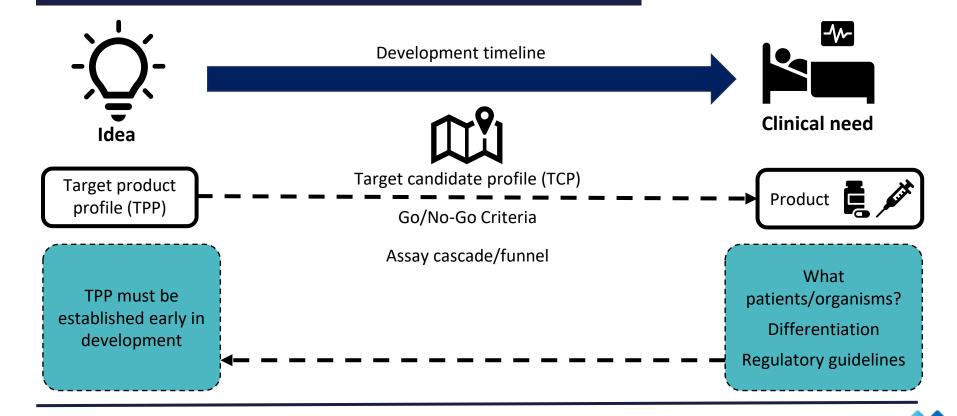
https://www.pewtrusts.org/en/research-and-analysis/data-visualizations/2021/antibioticdevelopment-needs-economic-incentives https://wellcome.org/news/its-time-fixantibiotic-market

The Role of SMEs in AMR Innovation

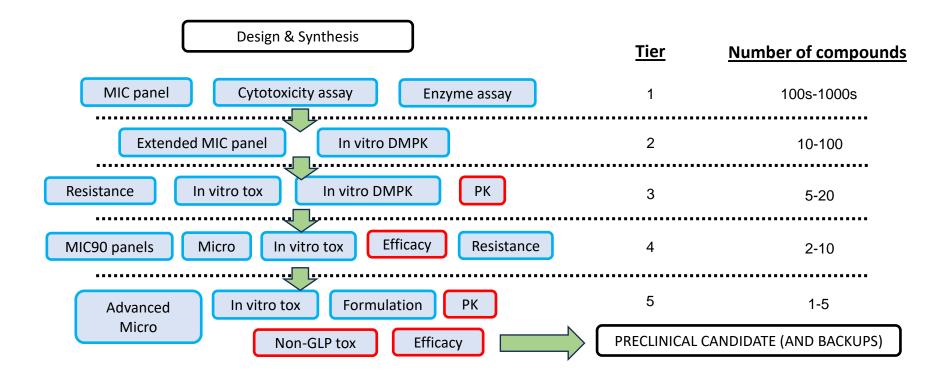
Less than 5% of preclinical AMR innovation occurs in large commercial organisations

Where SMEs fit in the pipeline

Academia


SMEs, Pharma, Non-profits

Pharma, Non-profits


Feasibility	Early Preclinical		CTA-Enabling	Clinical			Ę	A Cat
Discovery Target ID Target validation Hit compounds	Hit to lead	Lead op	GLP regulatory tox PK/PD Formulation Dose simulation CTA/IND preparation	Ph1	Ph2	Ph3		
PUSH funding —	lit Le	Cand	lidate Cand	iical idate ction			PULL 1	funding

35

Developing new antibiotics

Developing new antibiotics – HTL/LO

37

Challenges for SMEs in AMR R&D

Funding

- No/minimal revenue and lack of early-stage VC investment
- o Reliant on non-dilutive and in-kind funding
- o **<u>Delays</u>** waiting for grant decisions
- Spend more time raising money than on programs

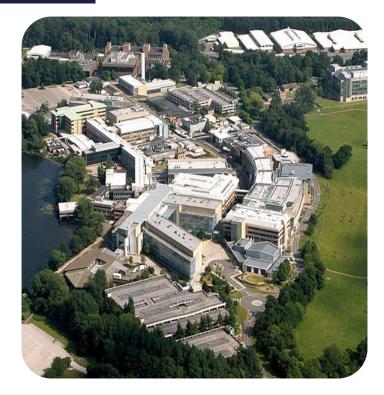
Exit routes

- SMEs generally don't do commercialisation but look for deals with larger organisations
- Broken market = <u>Not enough major pharma</u> <u>acquisitions</u> of clinical-stage programs (some exceptions)

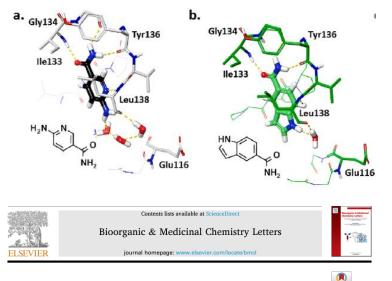
Risk

- o **<u>Portfolio size</u>** and risk management
- Portfolio = lower risk, but more expensive and difficult to fund all
- Single asset or platform = higher risk, but easier to fund and progress

Capability


- Knowledge in-house vs expert consultants
- DMPK, In vivo, toxicology, clinical, CMC, human dose/PK prediction
- Build that <u>network</u>!

Case studies


INFEX Therapeutics

- SME based at Alderley Park, UK (~20 employees)
- Portfolio of infection and pandemic pathogenfocussed programs (AMR and antivirals)
- Discovery/hit findings > Phase 2 clinical POC
- Microbiology and synthetic/medicinal chemistry teams
- Expert network of consultants and CROs
- Non-dilutive and in-kind funding through iiCON, CARB-X, Innovate UK, NIAID

Case study 1 – TrmD inhibitors

- Early stage hit finding program into novel targets in Gram-negatives; collaboration with Lifearc
- TrmD identified as essential and a promising target
- Structure guided drug design
- Found in most clinically important Gramnegatives

Evaluating the druggability of TrmD, a potential antibacterial target, through design and microbiological profiling of a series of potent TrmD inhibitors

Andrew J. Wilkinson^{*}, Nicola Ooi^{*}, Jonathan Finlayson^{*}, Victoria E. Lee^{*}, David Lyth^{*}, Kathryn S. Maskew^{*}, Rebecca Newman^{*}, David Orr^{*}, Keith Ansell^{*}, Kristian Birchall^{*}, Peter Canning^{*}, Peter Coombs^{*}, Lucia Fusani^{*}, Ed McIver^{*}, João Pisco^{*}, Philip M. Ireland^{*}, Christopher Jenkins^{*}, Isobel H. Norville^{*}, Stephanie J. Southern^{*}, Richard Cowan^{*}, Gareth Hall^{*}, Catherine Kettleborough^{*}, Victoria J. Savage^{*}, Ian R. Cooper^{*}

Case study 1 – TrmD inhibitors

	TrmD IC ₅₀ (μM) ^a	MIC (μg/mL) ^b	Measured						
		H. Influenzae ATCC 49247	E. coli N43	E. coli N43 + PMBN (4 μg/ mL)	LogD _{7.4}				
Control Antibiotics									
Erythromycin	ND ^e	4	8	0.5	ND ^c				
Nicotinamide Series									
15	0.31	1024	>1024	>1024	1.0				
21	0.011	1024	>1024	>1024	1.4				
22	0.027	512	512	256	3.0				
 23	0.009	256	>1024	>1024	ND ^c				
24	0.05	>1024	1024	1024	1.6				
25	0.13	>512	>1024	>1024	1.0				
Azaindole Seri	es								
33	0.31	>1024	1024	1024	1.4				
34	0.037	>1024	>256	>512	-0.2				
35	0.039	>256	>512	>1024	ND ^e				
36	0.036	>512	>512	>1024	0.2				
37	0.013	ND ^e	>1024	>1024	-0.1				
38	0.038	>1024	>512	>512	2.7				
39	0.096	1024	>1024	>1024	ND ^c				
40	0.12	>512	>1024	>1024	ND ^e				

- Extensive effort into optimising enzyme potency, alongside antibacterial activity and cytotoxicity assays
- Despite highly potent compounds being generated, no significant antibacterial activity was observed
- Target essentiality? Target druggability?
- Findings published and program terminated

Case study 2 – MBL inhibitors

- Early-stage program developing hits as metallo-β-lactamase inhibitors
- Inhibitor to be used alongside β -lactams
- Several leads were identified and profiled

J Antimicrob Chemother 2021; **76**: 460–466 doi:10.1093/jac/dkaa455 Advance Access publication 5 November 2020 Journal of Antimicrobial Chemotherapy

Restoring carbapenem efficacy: a novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales

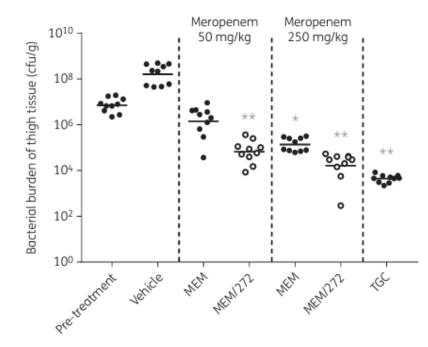

Nicola Ooi¹, Victoria E. Lee 💿 ¹, Nathan Chalam-Judge¹, Rebecca Newman¹, Andrew J. Wilkinson¹, Ian R. Cooper¹, David Orr¹, Sally Lee¹ and Victoria J. Savage 💿 ¹*

Table 1. Susceptibility of MBL-producing Enterobacterales to meropenem in combination with investigational MBLIs

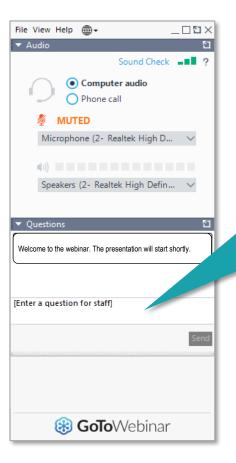
	MIC (mg/L)									
Compound(s)	E. coli ATCC BAA-2452 (NDM-1)	E. coli NCTC 13476 (IMP)	K. pneumoniae ATCC BAA-2146 (NDM-1)	K. pneumoniae NCTC 13440 (VIM-1)	K. pneumoniae NCTC 13443 (NDM-1)	K. pneumoniae NCTC 13439 (VIM-1)	E. coli ATCC BAA-2469 (NDM-1)			
272	>128	>128	>128	>128	>128	>128	>128			
276	>128	>128	>128	>128	>128	>128	>128			
364	>128	>128	>128	>128	>128	>128	>128			
439	>128	>128	>128	>128	>128	>128	>128			
MEM	1	4	32	1	128	0.5	4			
MEM/272	0.03 (32)	0.03 (128)	0.25 (128)	0.06 (16)	4 (32)	0.06 (8)	0.06 (64)			
MEM/276	0.06 (16)	0.03 (128)	0.5 (64)	0.06 (16)	16 (8)	0.06 (8)	0.06 (64)			
MEM/364	0.06 (16)	0.03 (128)	2 (16)	0.06 (16)	8 (16)	0.12 (4)	0.12 (32)			
MEM/439	0.06 (16)	0.06 (64)	2 (16)	0.25 (4)	16 (8)	0.25(2)	0.06 (64)			

Case study 2 – MBL inhibitors

- Additional optimisation to improve solubility
- Preclinical candidate selected MET-X
- CTA/IND-enabling phase completed
- Phase 1 studies imminent for combination of meropenem and MET-X

44

- SMEs do the majority of preclinical innovation in AMR R&D
- There are numerous challenges for SMEs in developing AMR-focussed therapeutics
 - Funding, exit routes, management of risk and building a robust network of experts


- SMEs do the majority of preclinical innovation in AMR R&D
- There are numerous challenges for SMEs in developing AMR-focussed therapeutics
 - Funding, exit routes, management of risk and building a robust network of experts
- However!!
- With a good team, innovative programs, flexible thinking and an enormous dose of optimism, these challenges can be overcome

Thank You!

How to submit your questions

If your question is addressed to a specific speaker, please include their name when submitting the question.

The presentation will be followed by an interactive Q&A session.

Please submit your questions via the 'questions' window. We will review all questions and respond to as many as possible after the presentation.

Today's speakers

Progressing an antibacterial drug discovery project – an SME perspective

Alisa Serio

Executive Director of Microbiology and Nonclinical Development Paratek Pharmaceuticals (USA)

Victoria Savage Chief Scientific Officer INFEX Therapeutics (UK)

Moderator & Host:

Daniel Ritz Senior Director – Senior Group Leader Biology Technologies/ Lead Discovery Idorsia Pharmaceuticals (Switzerland)

Upcoming webinars

Register now!

In collaboration with:

Register now!

The value of surveillance data in defining the medical need for new antimicrobials

With Ian Morrissey, Rebecca Li & Patricia Bradford

23 July 2024, 17:00-18:30 CEST

Exploring non-traditional antimicrobials: Insights from three cases

With Jennifer Schneider, Rida Mourtada & Gregorio Iraola

22 August 2024, 17:00-18:30 CEST

revive.gardp.org/webinars

Be the first to hear the latest REVIVE updates

- » On the REVIVE website (revive.gardp.org/webinars)
- » Subscribe to our newsletter
- » On X (@gardp_amr) and LinkedIn

Thank you for joining us

