2 REVIVE

by GARDP

Charting new frontiers in artificial o
Intelligence for antibiotic design

Guest speakers: Jonathan Stokes & Kurt Thorn
Moderator: Akhila Kosaraju
Host: Victor Kouassi

3 April 2025



2 REVIVE

by GARDP THREE AIMS OF REVIVE:

Capture essential R&D
technical knowledge and share
expertise with the global
community through the REVIVE

website (revive.gardp.org).

Facilitate Connect Knowledge
learning people sharing

revive.gardp.org



2 REVIVE

by GARDP

Webinar recordings

[ < REVIVE Webinars - REVIVE x +

&« @) ") () https//revive.gardp.org/revive-webinars/
HOME ABOUT

>REVIVE
“

3 April 2025,
(11:00 am ~ 12:30 pm EDT)

Charting new frontiers in
artificial intelligence for
antibiotic design

‘Speakers: Jonathan Stokes,
okase

Register now!

Moderated by Akhila Kosaraju, Phare Bio, USA

3 APRIL 2025

Charting new frontiers in artificial intelligence for
antibiotic design

> REVIVE

The importance of chemical
synthesis for antimicrobial
research and development

Recording available

23 JANUARY 2025

52% importance of chemical synthesis for antimicrobial

more

Modarated by Ravindra Jumds, GARDP, Switzsrland

- (]
a A O ¢
ENCYCLOPAEDIA EXPERTS LIBRARY WEBINARS

2 REVIVE
LIVE WEBINAR
In vitro and in vivo correlations for

prediction of human pharmacokinetics
and dose of antimicrobials

Speakers: Mathew Njoroge,
Uity of Cape T, D, South Abtes
Nina Lawrence,
Asialuoeca Swoden

Modwvtad ty Greg B, Universyof Cae Toun, o0 AMica

Register now!

27 FEBRUARY 2025

In vitro and in vivo correlations for prediction of human
pharmacokinetics and dose of antimicrobials

REVIVE

e

Implementation research for the
appropriate use of, and access
to, antimicrobials

Recording' EVETELI

3 DECEMBER 2024

Implementation research for the appropriate use of, and
access to, antimicrobials

revive.gardp.org/webinars




Antimicrobial Viewpoints 2> REVIVE

by GARDP

[ & Antimicrobial Viewpoints—REVIV X =

& @ R @  https//revive.gardp.org/antimicrobial-viewpoints/ Q A hm = xR

10 FEBRUARY 2025 14 JANUARY 2025

29 NOVEMBER 2024

How can we close the early discovery gap and
improve our ability to discover new antibiotics?
- by Olga Genilloud

Critically needed new antibacterial drugs for
children with drug-resistant infections: How
regulatory advancements can help - by Sumathi

AMR and the need for new and old treatments
for drug-resistant infections in LMICs - by
Samuel Kariuki, Robert Onsare and Evelyn
Wesangula ...

22 OCTOBER 2024 20 SEPTEMBER 2024

4 JULY 2024

Targeting WHO priority pathogens to reduce
mortality caused by neonatal sepsis - by Kajal
Jain, Vivek Kumar, M Jeeva Sankar and Ramesh

Driving toward solutions to reduce antimicrobial

0Ongoing initiatives against antibiotic shortages
manufacturing pollution - by Andrew C. Singer

- National, regional and global mechanisms to
improve access to antibiotics - by Enrico ...
more

more
more

revive.gardp.org/antimicrobial-viewpoints




Antimicrobial Encyclopaedia 2> REVIVE
O @ Enopaeda-ReVVE

by GARDP
x +

Abbreviated

e drgg Absorption
application

(ANDA)

Absorption,
distributien,
metabolism,
elimination
(ADME)

Active
Acinetobacter ph‘?‘rmaC?Ut'C
al ingredient
(API)

Access

revive.gardp.org/resources/encyclopaedia



How to submit your questions < REVIVE

by GARDP

2 8 8 & -

Questions

Please submit your
guestions through the box
provided after clicking the
‘questions’ button. We will
review all questions and
respond to as many as
possible after the
presentation.

If your question is
addressed to a specific No questions yet

speaker, please include
their name when
submitting the question.




Today’s speakers .  <REVIVE

by GARDP

Charting new frontiers in artificial
intelligence for antibiotic design

Moderator: Jonathan Stokes Kurt Thorn

McMaster University Arrepath, Inc.

Akhila Kosaraju
Phare Bio



2 REVIVE

by GARDP

Jonathan Stokes

Jonathan Stokes is an assistant professor in the Department of Biochemistry and
Biomedical Sciences at McMaster University, Canada. He is also co-founder and Chief
Scientific Officer of Stoked Bio.

His research group focuses on the development and implementation of machine
learning methods for drug discovery and design. They currently work on discovering
novel antibiotics to overcome drug-resistant bacteria and new molecules to treat an
aggressive form of brain cancer called glioblastoma.

Jonathan received his PhD in antimicrobial chemical biology in 2016 from McMaster
University. From 2017 to 2021, he was a Banting postdoctoral fellow at the Broad
Institute of MIT and Harvard in the USA.

thestokeslab.com
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We are in an antibiotic discovery void

1953: Glycopeptides, Nitroimidazoles, Streptogramins <« P> 1955: Cycloserine, Novobiocin

1952: Macrolides <« P 1957: Rifamycins
1950: Pleuromutilins < P 1961: Trimethoprim

1948: Cephalosporins <« P 1962: Quinolones, Lincosamides, Fusidic acid

1947: Polymyxins, Phenicols <« P 1969: Fosfomycin

1946: Nitrofurans < P 1971: Mupirocin
1945: Tetracyclines P 1976: Carbapenems

1943: Aminoglycosides, Bacitracin (topical) < P 1978: Oxazolidinones
1932: Sulfonamides <« P> 1979: Monobactams
1928: Penicilins < 7 P 1987: Lipopeptides

- DISCOVERY VOID
natural product mining v

high throughput screening

ReAct
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Acinetobacter baumannii is a challenging nosocomial gram-negative pathogen

. CARBAPENEM-RESISTANT
a . ACINETOBACTER

THReAT LEVEL urGenT [
~

A % 8,500 700 $281M

Estimated cases Estimated Estimated attributable

in hospitalized deaths in 2017 healthcare costs in 2017
patients in 2017

Acinetobacter bacteria can survive a long time on surfaces. Nearly all carbapenem-resistant Acinetobacter
infections happen in patients who recently received care in a healthcare facility.




We performed a screen of ~7,500 diverse molecules against A. baumannii
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Using graph neural networks for antibiotic prediction against A. baumannii
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Abaucin is active against A. baumannii in vitro
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nature chemical biology

Article https://doi.org/10.1038/s41589-023-01349-8

Deep learning-guided discovery of
an antibiotictargeting Acinetobacter
baumannii

Received: 25 March 2022 Gary Liu"'°, Denise B. Catacutan™'®, Khushi Rathod""°, Kyle Swanson ®2,
Wengong Jin?, Jody C. Mohammed', Anush Chiappino-Pepe ®3*, Saad A. Syed®,
Meghan Fragis ® ¢, Kenneth Rachwalski ®", Jakob Magolan © %,

Published online: 25 May 2023 Michael G. Surette®, Brian K. Coombes ®’, Tommi Jaakkola ®2,
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Discriminative models can explore ~10° molecules, but drug-like chemical space is ~10'dontknow mplecules

Our planet has ~10*8 grains of sand

How can we search the vastness of
drug-like chemical space?




SyntheMol-MCTS is a generative Al algorithm for de novo antibiotic design tasks
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We trained antibiotic property predictors on three chemical libraries totaling ~13,500 molecules

Library 1
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We leveraged ~132,000 molecular fragments and 13 reactions from the REAL space to generate novel molecules
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Level O

Level 1

Level 2

Level 3
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Our molecule design process in a nutshell
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Six of 58 synthesized molecules displayed activity in vitro against an array of ESKAPE pathogens
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nature machine intelligence

Article https://dol.org/10.1038/542256-024-00809-7 @l] c New ﬁurl( @imeg

Generative Alfor designing and validating
easily synthesizable and structurally

novel antibiotics AI+BUSINESS
TheScientist

Accepted: 8 February 2024 EXPLORING LIFE, INSPIRING INNOVATION
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Enterololin has Enterobacteriaceae specific antibacterial activity — lab pathogens
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Some structural features of enterololin are (somewhat?) consistent with perturbation of lipoprotein trafficking
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Machine learning model predictions of enterololin binding to the LoICDE complex — 100 seconds




Wet lab validation of the mechanism of action of enterololin — like 6 months
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Enterololin shows activity in mouse models of AIEC infection
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We’ve built a free online tool that you can all use if you’re interested

THE
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Arnold et al. In preparation
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Kurt Thorn

Kurt Thorn is Chief Technology Officer at ArrePath, a biotech company that uses a
combination of human intelligence and a cutting-edge Al/ML platform to discover and
develop small molecule therapeutics to address significant unmet medical needs. Here,
he leads efforts to develop tools to accelerate drug discovery for novel antibacterials.

Prior to this, Kurt was senior director of data science at Zymergen, a synthetic biology
company. Before transitioning to industry, Kurt was a research fellow at Havard
University and an associate professor at University of California, San Francisco (UCSF)
and Director of the Nikon Imaging Center at UCSF.

Kurt has a PhD in biophysics from UCSF and received his bachelor’s degree in
chemistry from Princeton University.

arrepath.com/about/
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The Al for AMR Company

ldentifying Progressible Antibiotic Candidates
Using Machine Learning-Guided Screening

Shilpa George, Kevin Hare, Graham Hone, Paul Lukacs, Kurt Thorn



New approaches are needed to discover novel antibacterials
1.27 million deaths were caused by AMR worldwide in 2079

» Conventional (target-based) drug discovery Antimicrobial resistance is a
approaches have largely failed to deliver new severe and growing problem
antibacterials, owing to the challenges of bacterial
permeability and efflux (especially in Gram-
negative bacteria). Novel Antibiotic classes

« ArrePath is taking a three-pronged approach to
address this problem:

ML models to predict novel whole-cell active
compounds
Phenotypic screening of predicted whole cell

active compounds
Image-based phenotyping to identify novel

mechanisms of action

1900 1910 1920 1930 1940 1950 1980 1970 1980 1990 2000 2010 2020

The Golden Age of The Drought of
antibiotic discovery antibiotic discovery

Pew Charitable Trust available at https://wellcome.org/news/its-time-fix-antibiotic-market
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The Lancet, Jan 2022

ARREPATH

34


https://wellcome.org/news/its-time-fix-antibiotic-market

ArrePath’s goal: Efficiently discover whole-cell active antibiotics
with novel mechanisms of action

Focus on Gram-negative bacteria

‘Traditional’ approach ArrePath’s approach

Chemical feature selection N ML-guided compound selection

Phenotypic HTS: 100,000s compound scale

Traditional filters and profiling: 100-1000s compound scale

N

Chemical genetics: 10-100s compound scale

ARREPATH

Enrich for progressible compounds

Phenotypic HTS: 100,000s compound scale

Imaging:100-1000s compound scale

Enrich for MoA novelty

Chemical genetics: 10-100s compound scale

J

35



Hypothesis: ML models will learn target engagement, permeation, and y
efflux avoidance

Successful antibiotics must:

* Permeate the bacterial membrane(s) and cell wall
« Avoid efflux pumps
* Engage with the target

\\

A single ML model can learn chemical features Permeat|on
. . , . "
associated with all three properties 'g’/ .

T 0

Ve &

Target Engagement

Our Hypothesis:

/ Efflu :

® ARREPATH 36



Goals of ML-guided compound selection

Goal: maximize progressible hits by finding molecules that:

1. Kill bacteria

2.  Dont kill mammalian cells

3. Have favorable medicinal chemistry features

4. Are chemically distinct from known antibacterial compounds

Modeling implications:
* Need models for £ coliactivity and cytotoxicity that extrapolate well to new compounds
 Filter for unfavorable medicinal chemistry and PAINS

 Remove molecules structurally similar to commercial antibiotics

ARREPATH

37



"

How do we build models with the best generalization?

17 A
* There are an estimated 1033 drug like molecules that can be

made 15 4

« Commercial screening collections are ~5M compounds in size -

» Goal of model is to identify the most active molecules in
these collections — we don’t need to predict an MIC, just an
ordering.

10 -

* We want to maximize the amount and diversity of the
compounds we can train our model on

Number of Compounds (M)

ARREPATH 38



Models are designed to prioritize compounds for screening

» Datasets are scaffold-split - we evaluate model
performance on Bemis-Murcko scaffolds different from

those we train on

* Models are evaluated by how well they prioritize active
molecules

 Virtual screening curves plot hits found as a function of
library screened, if screened in the order ranked by the

model

Scoring metrics:

 lift@X: 20% hits found at 1% screened compared to 1%
from a random model — 20x lift

* @Gini coefficient — a function of area under the curve.
0 = random; 100 = perfect

Bemis-Murcko scaffolds: The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem 1996

% hits found

100% -

80% -

60% -

40%

20% A

% Actives Found

0.10% 1.00% 10.00%

% library screened

ARREPATH

/

39



Antibiotic activity can be predicted across strains

More data from diverse strains outperforms less data from identical strains

e Nearly all compounds active in WT E. col

are also active in permeabilized or efflux
deficient strains

e Most (98%) of compounds are inactive in

any strain.

e Mutant strain data improves WT activity

prediction, even though most mutant-active
compounds are inactive against WT.

% of actives also active in

WT tolC lpxC
WT 100 84 86.2
tolC 9.3 100 30.6
IpxC 24.3 78.6 100

Data from CO-ADD

actives found

100% -

80%

60% -

20%

0% -

Red: WT E. colipredicted with 400k cpds measured in [ptD E. coli
Blue: WT £. coli predicted with 500 cpds measured in WT £. coli

Stokes ~—f"’ CO-ADD
Gini: 39 T Gini: 22

N T T T T T
0% 20% 40% 60% BO0% 100% 0%

ZOI% 40‘% 60‘% 8[;% 10‘0%
library screened

library screened

CO-ADD: Blaskovich MAT, Zueggq J, Elliott AG, Cooper MA. Helping Chemists Discover New Antibiotics. ACS Infect Dis.
American Chemical Society, 2075 Jul 10:1(7):285-287. PMID: 27622818

Stokes: Stokes JM, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20:180(4):688-702.e13.
PMCID: PMC8349178

ARREPATH 40



Leveraging lots of data

E. coli activity data is available on >IM compounds

» ArrePath has collected a large £. co/iactivity
dataset, but there is even more public data

* These are measured in different strains and assay

conditions — can’t compute an MIC or a
percentage inhibition

* |nstead, train a model that can consistently rank
each assay by activity

ARREPATH

@ ArrePath
® PubChem
@ CO-ADD
@ ChEMBL
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Antibacterial activity ranking models outperform single task
classification models
Predicting IptD Predicting BW25113

100% A MOdel
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— Internal IptD classifier
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» ArrePath has trained a multitask ranking model that predicts antibacterial activity. It is trained on 1.IM
compounds across 9 datasets including WT, efflux deficient, and membrane compromised strains.

 Single task models trained on our internal permeabilized mutant data or a WT Pubchem screen
perform well on the datasets they are trained on but generalize poorly to new data.

» The ranking model performs equivalently to the single task models on the data they are trained on
and better on other datasets.

For classification training datasets: hold out 1/5% of data as test set and hold out all scaffolds in test set from training data.
For all other datasets, hold out entire dataset as test set.
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Ranking model enriches for hits in early selection

Enrichment factors up to 20x: 20% of actives identified after screening 1% of library

80%

70% +

:

¢

% Actives Found

¢

% Actives Found

¢

ArrePath Internal Data, IptD

CO-ADD, WT (ATCC 25922)

10.00%

BO%
—— IptD Classifier, Gini: 62 — IptD Classifier, Gini: 25
—— Ranker, Gini: 63 0% - ——— WT BW25115 Classifier, Gini: 33
—— WT BW25115 Classifier, Gini: 30 —— Ranker, Gini: 41
=== Random === Random
60%
50% -
% R ——
0.10% 1.00% 10.00% 0.10% 1.00%
CO-ADD, tolC (MB 5747) % PubChem, WT (BW 25113)
—— |ptD Classifier, Gini: 20 —— WT BW25115 Classifier, Gini: 83
——— WT BW25115 Classifier, Gini: 22 0% 4 Ranker, Gini: 83
—— Ranker, Gini; 22 —— IptD Classifier, Gini: 51
=== Random === Random
60% -
50% -
40%
30% A
20%
10%
0% -
0.10% 1.00% 10.00% 0.10% 1.00%
% Screened % Screened

10.00%

80%

70% -

60%

20% +

10% -

CO-ADD, IpxC (MB 4902)

—— IptD Classifier, Gini: 33

—— WT BW25115 Classifier, Gini: 26
—— Ranker, Gini: 34

=== Random

0.10%

ARREPATH

)y

43



Cytotoxicity ranking models outperform single task

classification models

* ArrePath has trained a multitask
ranking model that predicts
cytotoxicity. It is trained on 2M
compounds across 16 datasets,
including measurements on HepG2,
HEK293, and three other cell lines

* As in antibiotic activity, single task
models perform well on the
datasets they are trained on but
generalize poorly to new data.

* The ranking model performs
equivalently to the single task
models on the data they are trained
on and better on other datasets.
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% Screened

For training datasets: hold out 1/4" of data as test set and hold out all scaffolds in test set from training data.

% Screened
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Compound selection strategy

Source compounds from Enamine screening collections

« Excluding compounds structurally similar to any >000 diversity-picked compounds

antibiotic approved or tested in the clinic.

* Pick compounds to maximize the distance from
the cytotoxicity-antibacterial activity tradeoff
boundary. o[ 3-38r

65™ percentile

* We limit how many structurally similar
compounds are selected to maximize diversity.

« Compounds are screened in £ coli [ptDin M9
media in single replicates, followed by triplicate
confirmation of hits.

» We also selected several pre-plated sets with
high fractions of predicted actives.
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3
ArrePath’s antibiotic activity model enriches for screening hits A

2x Increase in hit rate over unguided screening plus focus on tractability

- * ML-guided cherry-picking yielded twice as
0.70% | many hits as unguided selection, while
selecting for low cytotoxicity and maximizing
. diversity
' @>"poised Library * Quality of hits improved significantly — fewer
.ural Product-like Weak |nh|b|tors
B? 0.50%
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ArrePath’s ML-guided screening enriches for progressible hits

3x reduction in cytotoxic molecules over unguided screening
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Cytotoxicity Window (HepG2 / £ coli)

50

13% of ML-selected hits “fail” due to
cytotoxicity (cytotoxicity window <2)

37% of non-selected hits “fail” due to
cytotoxicity

This represents an additional enrichment in
progressible hits. Combined with the ~2x
enrichment in hits, this yields a ~3x efficiency
gain in progressible hits from ML-guided
screening

Compounds which do pass are on average less
toxic (median cytotoxicity window 10 vs 6)

We identify a larger fraction of WT-active
compounds in ML-quided screening (67% Vs
45%)
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ArrePath’s ML-guided screening identifies chemically-diverse hits
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Selection for antibacterial activity alone yields a high hit rate

* Multiple ML models have been shown to yield high
hit rates for predicting antibacterial activity

* These are reported on testing a small number of top- Compounds
ranked compounds which increases hit rate Tested

* Additionally, they frequently include compounds Roche GNEprop 24%,
highly similar to known antibiotics (e.g. 47/51 for
Stokes) Stokes Chemprop 99  51%

 We estimate a hit rate in a similar range if we '
tested only the top ranked hits in our screen ArrePath*  Ranking 345  32%

* Instead, we aim to prioritize selection of compounds
with novel MoAs that can progress to hit-to-lead
efforts

*Estimated
Sources: PowerPoint Presentation (roche.com),
Stokes JM, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20,180(4):688-702.e13.
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https://assets.roche.com/f/176343/x/e60b81765d/20231129_digi-day.pdf

Mechanistically novel hits are identified with ArrePath’s imaging

platform

All screening hits are profiled on our imaging platform to predict mechanistic novelty and potential targets

Test Compound

Novel phenotype

Novel compared Novel

Novelty prioritized

to clinically used compared to all

antibacterials? antibacterials?

~

A 4

Previously seen
/ similar
phenotype

A 4

Mapped antibacterial phenotypic space

Protonophore

0

Predicted target
and mechanistic
class

) _Predicted _ Ribosome
™~ “novel @inoglycoside)
u
DNA gyrase
il Y Cell\wall

0 Z\iizz;agne biosynthesis
___ Predicted __________ >/ _________
non-novel gosome
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Results of screen to date

Example hits shown below

104,779 compounds screened: ~30,000 cherry picked; ~70,000 in pre-plated libraries
3,376 primary hits; 1001 selected for follow up

287 active in in-house dose-response

Example compounds:

AP-00471778 AP-00469177 AP-00477607
MIC: 4 pg/mL MIC: 1T ug/mL MIC: 8 ng/mL
(£. colilptD, M9 media) (E. coli ATCC25922, M9 media) (£ coli ATCC25922, M9 media)
Putative target: Putative target: Pu’Fativg target:
Val/lle Biosynthesis Uracil Biosynthesis Cysteine Biosynthesis

All three compounds show no HepG2 cytotoxicity at 100 uM
ARREPATH
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Conclusions

* Predictive antibacterial models can be trained from data across multiple bacterial assays,
including across strains and media

e Screening compounds selected by antibacterial and cytotoxicity models increases
antibacterial hit rate by 2x, and reduces cytotoxicity failures by 3x

« Screening compounds selected by antibacterial models increases wild type hit rate by
1.5x%, indicating the models learn features associated with permeability and efflux
avoidance

 Screening hits are prioritized by mechanistic novelty using imaging

* ArrePath has used these approaches to identify a chemically diverse set of
antibacterials active against multiple novel targets, resulting in our current LO
project and another HTL project.

ARREPATH
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How to submit your questions < REVIVE

by GARDP

2 8 8 & -

Questions

Please submit your
guestions through the box
provided after clicking the
‘questions’ button. We will
review all questions and
respond to as many as
possible after the
presentation.

If your question is
addressed to a specific No questions yet

speaker, please include
their name when
submitting the question.




Today’s speakers .  <REVIVE

by GARDP

Charting new frontiers in artificial
intelligence for antibiotic design

Moderator:

Jonathan Stokes Kurt Thorn
McMaster University Arrepath, Inc.

Akhila Kosaraju
Phare Bio



2 REVIVE

by GARDP

The next REVIVE webinar will be
announced soon!

Be the first to hear the latest REVIVE updates
o Onthe REVIVE website (revive.gardp.org/webinars)

o Subscribe to our newsletter
o On X (@gardp_amr) and LinkedIn
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