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Jonathan Stokes
Jonathan Stokes is an assistant professor in the Department of Biochemistry and 

Biomedical Sciences at McMaster University, Canada. He is also co-founder and Chief 

Scientific Officer of Stoked Bio. 

His research group focuses on the development and implementation of machine 

learning methods for drug discovery and design. They currently work on discovering 

novel antibiotics to overcome drug-resistant bacteria and new molecules to treat an 

aggressive form of brain cancer called glioblastoma. 

Jonathan received his PhD in antimicrobial chemical biology in 2016 from McMaster 

University. From 2017 to 2021, he was a Banting postdoctoral fellow at the Broad 

Institute of MIT and Harvard in the USA.

thestokeslab.com
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How should we be using AI to help us fight superbugs?



We are in an antibiotic discovery void

natural product mining

high throughput screening

ReAct



AI allows us to explore vast chemical spaces for new useful chemical matter

High throughput screening = millions of molecules (<1% in vitro success rate)

AI models > billions of molecules (>10% in vitro success rate)



Acinetobacter baumannii is a challenging nosocomial gram-negative pathogen



We performed a screen of ~7,500 diverse molecules against A. baumannii

0
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Liu, Catacutan, Rathod et al. Nature Chemical Biology (2023)



Using graph neural networks for antibiotic prediction against A. baumannii

Output layer (prediction score)

Input layer (vector representations of molecules) 



Abaucin is active against A. baumannii in vitro





Discriminative models can explore ~109 molecules, but drug-like chemical space is ~10idontknow molecules

Our planet has ~1018 grains of sand

How can we search the vastness of 

drug-like chemical space?



Swanson, Liu et al. Nature Machine Intelligence (2024)

SyntheMol-MCTS is a generative AI algorithm for de novo antibiotic design tasks 



We trained antibiotic property predictors on three chemical libraries totaling ~13,500 molecules



We leveraged ~132,000 molecular fragments and 13 reactions from the REAL space to generate novel molecules



Our molecule design process in a nutshell



Six of 58 synthesized molecules displayed activity in vitro against an array of ESKAPE pathogens





We can use AI for stuff other than hit identification!

Discovery and AI-guided mechanistic elucidation of a novel Enterobacteriaceae-specific antibiotic

Catacutan et al. In revision



Enterololin has Enterobacteriaceae specific antibacterial activity – lab pathogens



Some structural features of enterololin are (somewhat?) consistent with perturbation of lipoprotein trafficking



Machine learning model predictions of enterololin binding to the LolCDE complex – 100 seconds



Wet lab validation of the mechanism of action of enterololin – like 6 months



Enterololin shows activity in mouse models of AIEC infection



We’ve built a free online tool that you can all use if you’re interested

Arnold et al. In preparation



stokesjm@mcmaster.ca



Kurt Thorn
Kurt Thorn is Chief Technology Officer at ArrePath, a biotech company that uses a 

combination of human intelligence and a cutting-edge AI/ML platform to discover and 

develop small molecule therapeutics to address significant unmet medical needs. Here, 

he leads efforts to develop tools to accelerate drug discovery for novel antibacterials. 

Prior to this, Kurt was senior director of data science at Zymergen, a synthetic biology 

company. Before transitioning to industry, Kurt was a research fellow at Havard 

University and an associate professor at University of California, San Francisco (UCSF) 

and Director of the Nikon Imaging Center at UCSF.

Kurt has a PhD in biophysics from UCSF and received his bachelor’s degree in 

chemistry from Princeton University.

arrepath.com/about/
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Identifying Progressible Antibiotic Candidates 
Using Machine Learning-Guided Screening

Shilpa George, Kevin Hare, Graham Hone, Paul Lukacs, Kurt Thorn



1. ML models to predict novel whole-cell active 
compounds

2. Phenotypic screening of predicted whole cell 
active compounds

3. Image-based phenotyping to identify novel 
mechanisms of action

New approaches are needed to discover novel antibacterials

• Conventional (target-based) drug discovery 
approaches have largely failed to deliver new 
antibacterials, owing to the challenges of bacterial 
permeability and efflux (especially in Gram-
negative bacteria).

• ArrePath is taking a three-pronged approach to 
address this problem:

34

Pew Charitable Trust available at https://wellcome.org/news/its-time-fix-antibiotic-market
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, The Lancet, Jan 2022

1.27 million deaths were caused by AMR worldwide in 2019

Novel Antibiotic classes

The Golden Age of 
antibiotic discovery

The Drought of 
antibiotic discovery

Antimicrobial resistance is a 
severe and growing problem

https://wellcome.org/news/its-time-fix-antibiotic-market


Imaging: 100-1000s compound scaleTraditional filters and profiling: 100-1000s compound scale

ML-guided compound selectionChemical feature selection

Focus on Gram-negative bacteria

ArrePath’s goal: Efficiently discover whole-cell active antibiotics 
with novel mechanisms of action

ArrePath’s approach‘Traditional’ approach

Phenotypic HTS: 100,000s compound scale

Chemical genetics: 10-100s compound scale

Phenotypic HTS: 100,000s compound scale

Chemical genetics: 10-100s compound scale

Enrich for MoA novelty

Enrich for progressible compounds

35



Successful antibiotics must:
• Permeate the bacterial membrane(s) and cell wall
• Avoid efflux pumps
• Engage with the target
Our Hypothesis:
• A single ML model can learn chemical features 

associated with all three properties

Hypothesis: ML models will learn target engagement, permeation, and 
efflux avoidance

36

Permeation

Efflux
Target Engagement



Goals of ML-guided compound selection

Goal: maximize progressible hits by finding molecules that:
1. Kill bacteria
2. Don’t kill mammalian cells
3. Have favorable medicinal chemistry features
4. Are chemically distinct from known antibacterial compounds

Modeling implications:
• Need models for E. coli activity and cytotoxicity that extrapolate well to new compounds
• Filter for unfavorable medicinal chemistry and PAINS
• Remove molecules structurally similar to commercial antibiotics

37



How do we build models with the best generalization?

• There are an estimated 1033 drug like molecules that can be 
made

• Commercial screening collections are ~5M compounds in size
• Goal of model is to identify the most active molecules in 

these collections – we don’t need to predict an MIC, just an 
ordering.

• We want to maximize the amount and diversity of the 
compounds we can train our model on

38



Models are designed to prioritize compounds for screening

39

Bemis-Murcko scaffolds: The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem 1996

• Datasets are scaffold-split – we evaluate model 
performance on Bemis-Murcko scaffolds different from 
those we train on

• Models are evaluated by how well they prioritize active 
molecules

• Virtual screening curves plot hits found as a function of 
library screened, if screened in the order ranked by the 
model

Scoring metrics: 
• lift@X: 20% hits found at 1% screened compared to 1% 

from a random model → 20x lift
• Gini coefficient – a function of area under the curve. 

0 = random; 100 = perfect
% library screened

%
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ts 
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Antibiotic activity can be predicted across strains

40

More data from diverse strains outperforms less data from identical strains

WT tolC lpxC

WT 100 84 86.2

tolC 9.3 100 30.6

lpxC 24.3 78.6 100

% of actives also active in

• Nearly all compounds active in WT E. coli 
are also active in permeabilized or efflux 
deficient strains

• Most (98%) of compounds are inactive in 
any strain. 

• Mutant strain data improves WT activity 
prediction, even though most mutant-active 
compounds are inactive against WT.

Data from CO-ADD

Red: WT E. coli predicted with 400k cpds measured in lptD E. coli
Blue: WT E. coli predicted with 500 cpds measured in WT E. coli

Stokes
Gini: 39

CO-ADD
Gini: 22

CO-ADD: Blaskovich MAT, Zuegg J, Elliott AG, Cooper MA. Helping Chemists Discover New Antibiotics. ACS Infect Dis. 
American Chemical Society; 2015 Jul 10;1(7):285–287. PMID: 27622818
Stokes: Stokes JM, et al.. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20;180(4):688-702.e13. 
PMCID: PMC8349178



Leveraging lots of data

• ArrePath has collected a large E. coli activity 
dataset, but there is even more public data

• These are measured in different strains and assay 
conditions → can’t compute an MIC or a 
percentage inhibition

• Instead, train a model that can consistently rank 
each assay by activity

41

E. coli activity data is available on >1M compounds

lptDWT

tolC

WT

WT

lpxC

tolC

ArrePath
PubChem
CO-ADD
ChEMBL



Antibacterial activity ranking models outperform single task 
classification models

42

For classification training datasets: hold out  1/5th of data as test set and hold out all scaffolds in test set from training data.For all other datasets, hold out entire dataset as test set.

• ArrePath has trained a multitask ranking model that predicts antibacterial activity. It is trained on 1.1M 
compounds across 9 datasets including WT, efflux deficient, and membrane compromised strains.

• Single task models trained on our internal permeabilized mutant data or a WT Pubchem screen 
perform well on the datasets they are trained on but generalize poorly to new data.

• The ranking model performs equivalently to the single task models on the data they are trained on 
and better on other datasets.

Multitask ranking model
Internal lptD classifier
BW25113 WT classifier

Model
Predicting lptD Predicting BW25113



Ranking model enriches for hits in early selection

43

Enrichment factors up to 20x: 20% of actives identified after screening 1% of library

Early enrichment is critical 
because we typically only 

cherry-pick ~1% of a library 
(e.g. 5,000 out of 500,000)



Cytotoxicity ranking models outperform single task 
classification models

For training datasets: hold out  1/4h of data as test set and hold out all scaffolds in test set from training data.

• ArrePath has trained a multitask 
ranking model that predicts 
cytotoxicity. It is trained on 2M 
compounds across 16 datasets, 
including measurements on HepG2, 
HEK293, and three other cell lines

• As in antibiotic activity, single task 
models perform well on the 
datasets they are trained on but 
generalize poorly to new data.

• The ranking model performs 
equivalently to the single task 
models on the data they are trained 
on and better on other datasets.

44



Compound selection strategy

45

Source compounds from Enamine screening collections

• Excluding compounds structurally similar to any 
antibiotic approved or tested in the clinic.

• Pick compounds to maximize the distance from 
the cytotoxicity-antibacterial activity tradeoff 
boundary. 

• We limit how many structurally similar 
compounds are selected to maximize diversity.

• Compounds are screened in E. coli lptD in M9 
media in single replicates, followed by triplicate 
confirmation of hits.

• We also selected several pre-plated sets with 
high fractions of predicted actives.
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2x increase in hit rate over unguided screening plus focus on tractability
ArrePath’s antibiotic activity model enriches for screening hits

• ML-guided cherry-picking yielded twice as 
many hits as unguided selection, while 
selecting for low cytotoxicity and maximizing 
diversity

• Quality of hits improved significantly – fewer 
weak inhibitors

Hit rate of 
non-selected HTS



ArrePath’s ML-guided screening enriches for progressible hits

• 13% of ML-selected hits “fail” due to 
cytotoxicity (cytotoxicity window <2)

• 37% of non-selected hits “fail” due to 
cytotoxicity

• This represents an additional enrichment in 
progressible hits. Combined with the ~2x 
enrichment in hits, this yields a ~3x efficiency 
gain in progressible hits from ML-guided 
screening

• Compounds which do pass are on average less 
toxic (median cytotoxicity window 10 vs 6)

• We identify a larger fraction of WT-active 
compounds in ML-guided screening (67% vs 
45%)

47

3x reduction in cytotoxic molecules over unguided screening

Cytotoxicity Window (HepG2 / E. coli )



ArrePath ML-guided hits
All screened compounds
Approved antibiotics
Non-clinical antibacterials of known mechanism

ArrePath’s ML-guided screening identifies chemically-diverse hits

48

• The chemical space covered by our hits is distinct 
from both clinically used antibiotics and published 
non-clinical antibacterials

• The plot on the right shows a tmap projection of our 
screened chemical space along with our hits, clinical 
antibiotics, and antibacterials

WIP



Selection for antibacterial activity alone yields a high hit rate

• Multiple ML models have been shown to yield high 
hit rates for predicting antibacterial activity

• These are reported on testing a small number of top-
ranked compounds which increases hit rate

• Additionally, they frequently include compounds 
highly similar to known antibiotics (e.g. 47/51 for 
Stokes)

• We estimate a hit rate in a similar range if we 
tested only the top ranked hits in our screen

• Instead, we aim to prioritize selection of compounds 
with novel MoAs that can progress to hit-to-lead 
efforts

49

*Estimated
Sources: PowerPoint Presentation (roche.com);
Stokes JM, et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20;180(4):688-702.e13.

Source Model Compounds 
Tested

Hit 
Rate 

Roche GNEprop 345 24%
Stokes Chemprop 99 51%

ArrePath* Ranking 345 32%

https://assets.roche.com/f/176343/x/e60b81765d/20231129_digi-day.pdf


50

All screening hits are profiled on our imaging platform to predict mechanistic novelty and potential targets

Mechanistically novel hits are identified with ArrePath’s imaging 
platform

Test Compound

Novel phenotype
Previously seen 

/ similar 
phenotype

Novel compared 
to clinically used 
antibacterials?

Novel 
compared to all 
antibacterials?

Predicted target 
and mechanistic 

class

Novelty prioritized

Cell wall 
biosynthesis

DNA gyrase

Ribosome

RNA polymerase

DHFR / DHPS

Protonophore

Ribosome
(aminoglycoside)

LPS

Membrane 
disruption

Mapped antibacterial phenotypic space

Predicted 
non-novel

Predicted 
novel



Results of screen to date

• 104,779 compounds screened: ~30,000 cherry picked; ~70,000 in pre-plated libraries
• 3,376 primary hits; 1001 selected for follow up
• 287 active in in-house dose-response
• Example compounds:

51

Example hits shown below

AP-00471778
MIC: 4 μg/mL 

(E. coli lptD, M9 media)

Putative target:
Val/Ile Biosynthesis

AP-00469177
MIC: 1 μg/mL 

(E. coli ATCC25922, M9 media)

Putative target:
Uracil Biosynthesis

AP-00477607
MIC: 8 μg/mL 

(E. coli ATCC25922, M9 media)

Putative target:
Cysteine Biosynthesis

All three compounds show no HepG2 cytotoxicity at 100 μM



Conclusions

• Predictive antibacterial models can be trained from data across multiple bacterial assays, 
including across strains and media

• Screening compounds selected by antibacterial and cytotoxicity models increases 
antibacterial hit rate by 2x, and reduces cytotoxicity failures by 3x

• Screening compounds selected by antibacterial models increases wild type hit rate by 
1.5x, indicating the models learn features associated with permeability and efflux 
avoidance

• Screening hits are prioritized by mechanistic novelty using imaging
• ArrePath has used these approaches to identify a chemically diverse set of 

antibacterials active against multiple novel targets, resulting in our current LO 
project and another HTL project.

52
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