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Jeremy Rock

Jeremy Rock is an Associate Professor at the Rockefeller University and head of the
Laboratory of Host-Pathogen Biology. His lab studies the human pathogen Mycobacterium
tuberculosis, the leading cause of death due to infectious disease. The Rock lab uses
functional and chemical genomics approaches to investigate the mechanisms by which
these bacteria colonize their hosts and how they evade killing by antibiotics.

Jeremy received his undergraduate degrees in biochemistry and economics from the
University of California, Berkeley. He then spent two years in the biotech industry at
Sangamo Biosciences to develop new tools for genome editing. Following this, he earned
his PhD from MIT where he studied cell cycle regulation with Angelika Amon. Jeremy
found his calling in mycobacterial pathogenesis while performing postdoctoral studies at
the Harvard School of Public Health with Sarah Fortune and Eric Rubin.

https://www.rocklaboratory.org/
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Common failure modes for target-based drug discovery
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relates magnitude of gene inhibition with cell fitness
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Defining target vulnerability

VULNERABILITY: CONTINUOUS VARIABLE
relates magnitude of gene inhibition with cell fitness
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Defining target vulnerability

Barbara Bosch Michael DeJesus Dirk Schnappinger
(Former PhD student) (Senior Computational Scientist) (Pl @ WCM)

Bosch & Dedesus et al, Cell, 2021



CRISPR interference for programmable target knockdown

dCas9

dcas9 Transcriptional
_) interference
| i SgRNA sgRNA BB

targeting dCas9
region handle

Sth1 Cas9 consensus PAM:
5-NNAGAAW-3’

Rock et al, Nat Micro, 2017



Tunable CRISPRI with Sth1 dCas9
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Defining target vulnerability in Mtb
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Defining target vulnerability in Mtb
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Defining target vulnerability in Mtb

(i) Library Construction (i) Competitive Growth Experiment (iif) Analysis
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Benchmarking genome-scale CRISPRI to ThSeq
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Quantifying sgRNA “strength”
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sgRNA strength predictions are reasonable
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sgRNA L2FC (+ATc/—ATc)
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Quantifying gene vulnerability
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Quantifying gene vulnerability
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Quantifying gene vulnerability

Fitness cost (B.)
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Essential genes have different vulnerabilities
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Pathway analysis of vulnerability
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Estimated rate of depletion (j3,)

Not all drug targets are made equal
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Understand Mtb biology to build better therapies
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that perturb that
biology and thereby
inhibit Mtb
pathogenesis

Discover new
biology that
facilitates Mtb
pathogenesis
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Understand Mtb biology to build better therapies
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Dirk Schnappinger

Dirk Schnappinger joined Weill Cornell Medical College in 2001, where he currently holds the position of
Professor in the Department of Microbiology & Immunology. He received his Ph.D. from the Friedrich-
Alexander University of Erlangen-Nurnberg, Germany, in 1998 for work on the repressor controlling
tetracycline resistance in Gram negative bacteria. After his graduate work Dr. Schnappinger began to study
the human pathogen Mycobacterium tuberculosis (Mtb), first at UC Berkeley, in the lab of Dr. Lee Riley, and
then at Stanford under the guidance of Dr. Gary Schoolnik, where he helped to adapt microarray-based RNA
profiling to the analysis of bacterial pathogens.

His current research aims to help develop new medicines for the treatment and prevention of Tuberculosis
(TB), an infectious disease that still claims over a million lives each year. This work began with developing a
regulatory system that allows to turn Mtb genes on and off, both in vitro and during infections. His lab now
applies this and other genetic approaches to evaluate Mtb gene products as new targets for TB drug
development by documenting the impact of their genetic inactivation on growth and persistence of Mtb in
vitro and in mice, help elucidate the mechanisms by which small molecules inhibit the growth of Mtb, improve
safety of the M. bovis BCG vaccine and develop a human challenge model for TB.

https://www.ehrtschnappingerlabs.org/




The application of chemical-genetic
tools In TB drug discovery

Dirk Schnappinger, PhD
Department of Microbiology and Immunology
Weill Cornell Medicine
New York, USA



Applications

1. Validation of Mtb targets in mice
2. Mechanistic analysis of hit and lead compounds

3. Discovery of new chemical matter: target-directed whole cells
screens

2025.09.09



Why conditional gene silencing?

* Most antibiotics target in vitro essential gene products/processes,
which are difficult to study using traditional genetic approaches and
screens (such as transposon-based methods).

» Successful treatment of an infection requires targeting gene
products/processes required by a pathogen to maintain an infection.

« Conventional mutants (transposon mutants, deletion mutants) often

only allow to assess the importance of a gene product for establishing
an infection.

Goal: Develop a conditional gene silencing system that allows to
efficiently suppress gene activity in vitro and during infection.

Validation of Mtb targets in mice



Dual-control (DUC) system
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Impact of interfering with NAD synthesis

Validation of Mtb targets in mice



Impact of interfering with NAD synthesis
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Identification of sterilizing targets
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Mechanistic analyses of hits and leads
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MmpL3: TMM transporter
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Adams et al, PMID 34242558
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Mechanistic analyses of hits and leads



MmpL3: frequent target in phenotypic screens
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Two-way regulation of mmplL3
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Chemical genomics
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Chemical genomics
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Chemical genomics

© ATP synthase
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Chemical genomics

© ATP synthase
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Chemical genomics

© ATP synthase
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Target-directed whole cells screens

nature Vol 44118 May 2006|doi:10.1038/nature 04784

LETTERS

Platensimycin is a selective FabF inhibitor with
potent antibiotic properties

Jun Wang'*, Stephen M. Soisson', Katherine Young', Wesley Shoop't, Srinivas Kodali', Andrew Galgoci',
Ronald Painter', Gopalakrishnan Parthasarathy', Yui S. Tang', Richard Cummings', Sookhee Ha', Karen Dorso’,
Mary Motyl', Hiranthi Jayasuriya', John Ondeyka', Kithsiri Herath!, Chaowei Zhang', Lorraine Hernandez',
John Allocco!, Angela Basilio!, José R. Tormo!, Olga Genilloud!, Francisca Vicente!, Fernando Pelaez!,
Lawrence Colwell’, Sang Ho Lee', Bruce Michael', Thomas Felcetto', Charles Gill', Lynn L. Silver't,

Jeffery D. Hermes', Ken Bartizal', John Barrett't, Dennis Schmatz', Joseph W. Becker', Doris Cully’

& Sheo B. Singh'

Chemistry & Biology

Pathway-Selective Sensitization
of Mycobacterium tuberculosis
for Target-Based Whole-Cell Screening

Garth L. Abrahams,!-2* Anuradha Kumar,® Suzana Savvi,! Alvin W. Hung,* Shijun Wen,* Chris Abell,*
Clifton E. Barry Ill,5 David R. Sherman,® Helena |I.M. Boshoff,5 and Valerie Mizrahi-2*

Johnson et al. PMID: 31217586

2025.09.09
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Multiplexed target-directed whole cells screens
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Opportunities and
challenges in TB drug
discovery:

Targeting Pks13 as a case
study

Laura Cleghorn
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Polyketide Synthase (Pks13) 3’99 \ B9 orbunces

e

* Pks13is an essential gene
* Role: Condense 2 different fatty acid chains to produce cell wall mycolic acids
* Only found in mycobacteria and is essential for its survival

* Pks13 protein contains1733 amino acids
* 5 domains are known to have function

1 25 91 118 539 715 1018 1241 1304 1470 1727 1733

* Today’s webinar will summarise drug discovery efforts to target Pks13



15t Discovery of Pks13 inhibitors S | B9 o
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1 25 Qy 118 539 715 1018 1241 1304 1470 1727 1733

TP2: A single nucleotide polymorphism (SNP)
converting Phe 79 to Ser conferred resistance

\
Benzofuran: Two different SNPs converting an Asp O 0 W,
at 1607 to Asn and at 1644 to Gly NS / TAM16

TP2: R. Wilson et al., Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat Chem Biol 2013, 9 (8), 499-506.
Benzofuran:T. R. loerger et al, Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 2013, 8 (9), €75245.



Benzofuran ‘TE’ series
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clearance

0.3uM
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0.3uM
> 30 uM

0.9 mL/min/g



Benzofuran ‘TE’ series efficacy S | B9 o

‘Acute’ efficacy ©GsSK

[22)

1Y

LOG,, CFU (Lungs)
N

o

1 10 100 1000
6 (mg/kg)

| ‘6’ PDB ID: 7M7V

Follow up cardiotoxicity study on 6 highlighted the hERG liability remained
* Series halted

Major Challenge:
* Lipophilic amine essential & responsible for off-target cardiovascular toxicity
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Target based screening strategy j;gu \ V4 ofDundes

Next a screening campaign to identify alternative chemical start points was initiated

» ~183Kcompounds screened from a variety of libraries
* ~ 1,500 progressed to hit confirmation

1. Pks13 Enzyme Assay

)
«I
-

N
/O \ \W)\N o”
N-O H
=0

3. BLI direct binding assay Pks131Cs, 0.5 uM Pks131Cs, 0.3uM
* H37Rv MIC 0.08 uM H37Rv MIC 11 uM ‘602’ Series
hERG IC50 0.8 uM hERG IC50 >20uM
. Microsomal . Microsomal .
4. Pks13 hypomorph strain clearance 3 mL/min/g clearance 20 mL/min/g

ez Weill Cornell
(&) Medicine

*X.Wang et al., Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads. Bioorg Chem 2021, 114, 105110,
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Moves to accommodate
Benzofuran

Rearranges to allow
stacking interaction with
Phe1670 l

o Pks131C;, 0.3uM
H37Rv MIC 1.2 uM
g hERG IC50 ND
Microsomal 1 mL/min/g
clearance

His1699

Asp1560

N

@] \\')\N (@)
/

-0

Ser1533

Catalytic triad

Pks131C;, 0.4 uM
H37Rv MIC 0.7 uM
hERG IC50 >70 uM
Microsomal .
TAM16 (PDB ID 5V3Y: cyan and purple) clearance 1 mL/min/g

50 (PDB ID 8QO0T: yellow and green)



‘TE’ series from DEL screening j_gy I 5

An alternative binding mode to inhibit the Pks13 ‘TE’ domain identified

DNA encoded library (DEL) screen
e Xchem/TAMU*
 DDU

DDU DEL
* Challenges
 Balancing optimisation of ADME
and retention of potency
7m7v —cyan (Benzofuran ‘6’) . NRIT
800t - yellow (602) hERG liability

8tqv — maroon (xchem)* * Limited in vivo efficacy
DDU-DEL - green”

*|. V. Krieger et al., Inhibitors of the Thioesterase Activity of Mycobacterium tuberculosis Pks13 Discovered Using DNA-Encoded Chemical Library Screening, ACS Infectious Diseases 2024 10 (5), g
1561-1575, DOI: 10.1021/acsinfecdis.3c00592 “"Unpublished results



Phenotypic start point
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Phenotypic screening of a large library of ~225K compounds - identified a potent singleton mm i

Screening against a PiniB-LUX strain indicated the compound targeted the cell wall

* Mmpl3, DprE1, InhA, Fad32, KasA, Pks13

Resistant mutants generated

FoR 108(10 x MIC)
N-ACP and KS domain
 F79L like F79S mutation reported for TP2

Both ‘1’ and ‘TP2’ contain a pentafluorophenyl moiety

‘Potential covalent binder’
Cys287 is the sole cysteine in 181 800 residues of Pks13

Infecti
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©) Medicine
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N, 7
N R F
N o’ - 0
:ﬁ : F
NT S
F F
H37Rv MIC 0.1 uM
hERG IC50 >30uM —
Kin. Sol (uM) 2 uM
Microsomal > 50 mL/min/g
clearance
/ S (0] F
.~ N F )
MeO H
" Yo F F
F
H37Rv MIC 0.1 uM
hERG IC50 ND
Kin. Sol (uM) 0.2 uM
Microsomal 18 mlLi e
clearance

‘N-ACP/KS’ series development

o I
o
N F, F
/Q%:NH
o F
o
F F

*Unib of Dundee

e

“ 9Dy : i
: Discovery ‘ @ University

JQW

H37Rv MIC 0.3uM
hERG IC50 ND

Kin. Sol (uM) 204 uM
Microsomal > 0.5 mL/min/g
clearance

Hepatocyte 12 mL/min/g
clearance

H37Rv MIC 0.8 uM
hERG IC50 ND

Kin. Sol (uM) 196 uM
Microsomal > 0.5 mL/min/g
clearance

Hepatocyte 3 mL/min/g
clearance

PK study ’43’ allowed progression to an ‘acute’ in vivo efficacy
 Noreduction in bacteria load (8-day study @ 200 mg/kg) observed
 High conc" over 7 days required to see cidal effect in macrophages

e Not anissue with other series
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Inhibitors across the Pks13 domains have been investigated

 Data available in public domain

4 1 A SuFEx*
1 25 91 118 539 / \_ 715 1018 1241 1304 w 1733

o

HN—? N ﬁ‘“ |
Ozs, -<N;’ b
o CMX410 - > @
.. _ Asp1560 /,Q 0\
Preclinical covalent compound ‘ = 533 w
His1699 ’ \ J
*  Arylfluorosulfate warhead WO .,

-

11
*Krieger, I.V., Sukheja, P., Yang, B. et al. SuFEx-based antitubercular compound irreversibly inhibits Pks13. Nature, 2025, https://doi.org/10.1038/s41586-025-09286-3



Lessons learnt and challenges ;:gy I 5

Challenges:

* hERG (3/4 TE series needed to mitigate this risk)
* Limited PK exposure

* |dentifying relevant chemical matter

Tools:
* Accessto hypomorph has been essential to confirm on target
e Structural biology

Key question yet to be addressed:
* Will Pks13 contribute towards a superior regimen?

12
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