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Adrian Egli

Adrian Egli is Director of the Institute of Medical Microbiology, University of Zurich. His
research aims include developing new diagnostics for rapid detection of multidrug-
resistant and virulent pathogens, exploring novel typing technologies such as whole
genome sequencing (including long reads, e.g. Pacbio, Minion) and MALDI-TOF mass
spectrometry for clinical applications and to understand evolution of pathogens within the
host (e.g. during antibiotic treatment).

Between 2015 and 2022, Adrian was the Head of Clinical Microbiology at the University
Hospital of Basel, Switzerland where he was also a fellow in Clinical Microbiology. He is
also a Research Group Leader in Applied Microbiology Research in the Department of
Biomedicine of the University of Basel. Adrian studied medicine at the University of Basel
and also received his PhD from the same university in 2008.

linkedin.com/in/adrian-egli-90b970b9
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Problem for diagnostics: different pathogens

Resistance
[ Associated with resistance
B Attributable to resistance

=>» Different lead pathogens.

=» Different sample types.

Antimicrobial resistance collaborators, Lancet 2022

In 2019: Estimated 4,95 million
people (95% Cl 3,62-6,57) died
with AMR, incl. 1,27 million people
(95% C10,91-1,71) died due to AMR

Deaths (count)

LRI+ BSI Intra- uTi Tuberculosis Skin CNS TF-PF-INTS  Diarrhoea Cardiac Bone+
abdominal
Infectious syndrome
University of | Revive Webinar: Using Al for AMR
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Problem for diagnostics: different molecular mechanisms for resistance

Antibiotic Gram-Negative Bacterium
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Overexpression of
transmembrane efflux pump
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* Porinloss

* Efflux pump

* Target modification
* Cleaving enzymes

— Diverse resistance mechanisms, not
all are simply based on a single gene.

-> Heterogenity



Delay in antibiotic susceptibility testing

Time to efficient treatment is associated with survival 1.

Problem: Antibiotic susceptibility testing takes time.
- As consequence, broad-spectrum empiric treatment
is given. Not everything can be covered.

Reason for need: Antimicrobial resistance is rapidly
expanding. Diagnostic information helps to treat
adequatly.

One question we asked outselves: Can we use artificial
intelligence for rapid assessment?

1 Kumar A et al., Crit Care Med 2006

University of | Revive Webinar: Using Al for AMR
Zurich
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What is artificial intelligence?

- —

Artificial intelligence (Al) is the field of computer science focused on

. g — — Artificial AN
creating machines that can perform tasks requiring human-like in-

Intelligence N
telligence, such as reasoning, learning, problem-solving, and '
decision-making. Al systems achieve this by learning from vast '
amounts of data to identify patterns, make predictions, and adapt Machine N
their behavior, enabling them to automate complex tasks and improve {@ Learning \

performance over time. @

Google: “What is artificial intelligence?” (26.09.2025, AE)

\ Deep K
\ Learning K

Y e - = =
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What can we do with Al? Output
1. Categorisation! ~

Input

Bluebér

Blueberry  Non-food
BlaCk bOX (a.k.a. AI) muffin muffin

Non-food |

Blueberry
muffin

B
E——) B

Trend towards explainable Al

Blueberry Non-food
muffin

'-iéﬂi

(Qtee e | . B 3
Non-food  Blueberry  Non-food Blueberry
muffin muffin
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What

can we do with Al?

Accessing information! (+ knowledge).

90

9] Better reflects consensus
//86.5
80 / Better reading comprehension
3\‘1 Better knowledge recall
>
v
g 70 Med-PalLM Better reasoning
o ¥
L -’
= -7 67.2
2 GPT 3.5.7
>
7 60
A L7 60.2
§ > More inaccurate/irrelevant information
2 BioMedLM ,”
= ’ ’ ; :
= 50 DRAGON __ -~ @ Omits more information
C_D) BioLinkBERT T e 50.3 i £ hic bi
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= #7 45.1
40 PubMedBERT, ~ I $ Greater extent of harm
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Med-PaLM 2

High Quality Answer Traits
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Potential Answer Risks

20 40 60 80 100
% Responses
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Figure 1 | Med-PaLM 2 performance on MultiMedQA Left: Med-PaLM 2 achieved an accuracy of 86.5% on USMLE-style
questions in the MedQA dataset. Right: In a pairwise ranking study on 1066 consumer medical questions, Med-PaLM 2 answers
were preferred over physician answers by a panel of physicians across eight of nine axes in our evaluation framework.

* Newst models with deep research capacity reach >98% in MedQA.

« Domain level expertise e.g. in public health and epidemiology is likely much lower.
» Challenges: Data scarcity. Medicine is per se a very heterogenous topic, little data interoperability.

Singhal K, Azizi S, Tu T et al. Nature 2023

University of
Zurich
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Where can Al be implemented? 1
aka “the brain-to-brain cycles”

®

e.g., diagnostic stewardship, quality assessment

N

Clinic Laboratory @
. o e.g. microscopy image analysis,
g;tléﬂt Microbiologist agar plate image analysis,
- ysician Technician Interpretation of results,
urse Bioinformatician MALDI-TOF MS spectral analysis,

Intervention 1011100 genome sequencing
- Attention: IVDR/FDA approval

®

e.g., communication, summary

[1] Egli A, Schrenzel J, Greub G, Clin Micro Infect 2020; [2] Egli A, Clin Infect Disease 2023

University of | Revive Webinar: Using Al for AMR 29/10/2025 | 16
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Analytics in routine labs

i > E i
i —_— L. | 8h -4 weeks i
! 8h -4 weeks Few minutes . !
. Specimen Culture! MALDI-TOF MS?> Resistance
i e.g. blood, urine, etc. Identification Phenotypic®’ i
| — ;
i [_ [xax ;
| : 1 ;
: I I :
E 30minto 3h 1-7days T ‘.] E
PCR Sequencing ;

HinicV, Amrein |, ... et Egli A J Micro Met 2017; 2 Dierig A, Frei R, Egli A, Ped Infect Dis J 2015 3Egli A et al. Transpl Infect Dis 2015; 4 Osthoff M, ... et Egli, A. Clin Microbiol Infect 2017; >
Weis C, ... Egli A, Borgwardt K, Bioinformatics 2020; © Egli A, Schmid H, et al. Clin Microbiol Infect 2017; " Hinic V, Reist J, Egli A J Microbiol Met 2018
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Analytics in routine labs

Culture! Resistance

| Phenotypic®’

HinicV, Amrein |, ... et Egli A J Micro Met 2017; 2 Dierig A, Frei R, Egli A, Ped Infect Dis J 2015 3Egli A et al. Transpl Infect Dis 2015; 4 Osthoff M, ... et Egli, A. Clin Microbiol Infect 2017; >
Weis C, ... Egli A, Borgwardt K, Bioinformatics 2020; © Egli A, Schmid H, et al. Clin Microbiol Infect 2017; " Hinic V, Reist J, Egli A J Microbiol Met 2018
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What is a convolutional neural network?

Input Output
Agar plate Feature Flatten Fully List of species
image maps layers connected and probabiblity
layers
0 Q
FH = NS 0.99 E. coli
: B A 0.50 E. ol
g . 0 2 . . cloacae
) - | 8
o - | | H . :;i . g
2 Lgh - l L = o 0.24 P. mirabilis
/ . — - O o
Kernel mam o O
Agar plate with O Pooling +
bacterial colonies Convolution + Rectified Linear Unit
Scanning Extraction of features Classification Probabilistic
Early layers: « » Later layers: distribution
edges or color species-specific
intensity differences complex patterns
WeberL, ... etEgliA, in prepare
University of | Revive Webinar: Using Al for AMR 29/10/2025 | 19
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Culture plates on total lab automation

Detection of colonies
— positive vs. negative plates; Sensitivity 97-99%; specificity 94-99%. [1-2]
Identification of bacterial species

— Staphylococcus aureus, E. coli, etc. with specificity of 94%-99%. [1-4]

PhenoMATRIX urine 7 Urethralfions

Special thanks to
Dr. Oliver Nolte
for providing the images

[1] Croxatto A et al. Biomedical J 2017; [2] Glasson J et al JCM 2016; [3] Cherkaoui A, Renzi G et al. Front Cell Infect Microbiol 2019
[4] Signoroni A et al. Nat Commun 2023

University of | Revive Webinar: Using Al for AMR 29/10/2025 | 20
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Automated reading of resistance

Automated measurement of inhibition zones: principles. 1-2]

“Currently all results are approved by clinical microbiologists, but in the near future these instruments would
automatically deliver S/I/R categories without requiring a human check.“3!

Pseudomonas aeruginosa
E coli

[1] Cherkaoui A, Renzi G, et al. CMI 2019; [2] Hombach M et al. JAC 2017; [3] Dauwalder O et Vandenesch F, CMI 2020

University of | Revive Webinar: Using Al for AMR 29/10/2025 | 21
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Customized GPT as an expert

Leading question: Can we use a multi-modal LLM to predict

the underlaying molecular resistance mechanism?

Giske Ch, Bressan M, ... Egli A, JCM 2024

University of
Zurich

| Revive Webinar: Using Al for AMR

Prof. Ch. Giske

@ OpenAl

Step 1: Generation of a GPT
powered generative Al agent.

Step 3: Within model testing.

Checked with few examples.
Improving rules for obvious
mistakes e.qg. list of species with
chromosomal AmpC.

4

¥

Step 5: Standardized prompting.

Ask for:

(i) Interpretation of image and table;

(ii) Provide output table with 4 categories:
“None”, “ESBL”, “AmpC”, and
“Carbapenemase”;

(iiiy recommended confirmation;

(iv) and short argumentation text.

EUCAST GPT Expert
Expert on EUCAST standards and general

antimicrobial susceptibility

U

Step 2: Acquisition of knowledge.

Using document from EUCAST.org
- EUCAST breakpoint table v13.1
- Expert rules

Step 4: Input for prompt.

+ same image without
measurement circles.

+ Table with
measured inhibition zones

U

Step 5: Output analysis

g et AT ety e s st AT 0 cetentn

{
i
i
i

e oo et o P o e e dtection

Output table Argumentation

Step 6: Calculation of output performance

e.g., sensitivity and specificity.

29/10/2025 | 22
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Human expert vs. custom GPT

Sensitivity
Specificity

Sensitivity
Specificity

Carbapenemases Sensitivity

Specificity

Giske Ch, Bressan M, ... Egli A, JCM 2024

University of Revive Webinar: Using Al for AMR
Zurich

| Human experts?

98.0% (91.8 - 100)
99.1% (97.1 - 100)

96.8% (93.3 - 100)
97.1% (95.9 - 97.7)

95.5% (90.9 - 100)
98.5% (98.5 - 98.5)

29/10/2025 | 23



Human expert vs. custom GPT

| Humanexperts _____|EUCAST-GPT-expert’
I - 98.0%(91.8-100) 95.4% (94.5 - 96.3)
B -, 9900 (97.1-100) 69.2% (63.8 - 85.7)
_ Sensitivity  96.8% (93.3 - 100) 96.9% (87.5 - 96.9)
B, oo (0590-977) 86.3% (84.1 - 91.8)
Sensitivity  95.5% (90.9 - 100) 100% (90.9 - 100)
_ Specificity ~ 98.5% (98.5 - 98.5) 98.8% (98.8 - 98.8)

Customized GPT is necessary (domain level expertise), as GPT-4 cannot provide a useful output.
Specificity of human experts much better than the Al.
Prospective validation is necessary.

Giske Ch, Bressan M, ... Egli A, JCM 2024

University of Revive Webinar: Using Al for AMR 29/10/2025 | 24
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Antibiogo - a tool by Medecins sans frontieres

| | ASTapp is a free, offline application to help the non-

1D310031 Thursday 26/10

% summary expert staff in low resources setting laboratories with the

Petri dish review O multiple In progress (4)

interpretation of antibiograms.!

41699 ECO mmmm  75%

Coagulase negative 3 1
staphylococcus discs dish
6mm \ N3 ‘ ‘
il . Respiratory aspirate
6mm TOBIO  €TXS My i \

RE Renee Johnes Started 2h ago

41662 STAPH mmm=  75%

Cooaes osetive 6 ] Portable Al via smart phone-based applications or cloud.

discs dish
Respiratory aspirate

N Example: Smart phone on microscope

41640 ECO mmmm  75%

Escherichia coli 5 1

AST information Central catheter discs dish

AST ID RE Renee Johnes Started 2h ago
ID310031

Sample type 41321 ENT wem  75%

Blood
Coagulase negative 12 2

staphylococcus
Proceed to results B discs  dish
Respiratory aspirate

1 Malou N, AlAsmar M, et al. MSF Science Portal 2021
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Analytics in routine labs

Culture! Resistance

| Phenotypic®’

HinicV, Amrein |, ... et Egli A J Micro Met 2017; 2 Dierig A, Frei R, Egli A, Ped Infect Dis J 2015 3Egli A et al. Transpl Infect Dis 2015; 4 Osthoff M, ... et Egli, A. Clin Microbiol Infect 2017; >
Weis C, ... Egli A, Borgwardt K, Bioinformatics 2020; © Egli A, Schmid H, et al. Clin Microbiol Infect 2017; " Hinic V, Reist J, Egli A J Microbiol Met 2018
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Analytics in routine labs

y —
B qr LN NV 8h - 4 weeks
MALDI-TOF MS%> Resistance

| |dentification Phenotypic®’

HinicV, Amrein |, ... et Egli A J Micro Met 2017; 2 Dierig A, Frei R, Egli A, Ped Infect Dis J 2015 3Egli A et al. Transpl Infect Dis 2015; 4 Osthoff M, ... et Egli, A. Clin Microbiol Infect 2017; >
Weis C, ... Egli A, Borgwardt K, Bioinformatics 2020; © Egli A, Schmid H, et al. Clin Microbiol Infect 2017; " Hinic V, Reist J, Egli A J Microbiol Met 2018
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Can we predict AMR profiles

a Data collection and filtering
@ imxTT directly from MALDI-TOF?
.§ E’ i M} m'z i.
é Jr E AM: profile In', @
3 E Oxacilln: :-" . o . , Dr. C. Weis Dr. A. Cuénod
§ | cotvaane [ \ Universitatsspital Aline Cuénod, Michael Osthoff
Soehe @ /7 Basel Kirstine K. Soegaard, Adrian Egli
@ @ mzurICh Caroline Weis, Bastian, Rieck,

o DRIAMS-A DRIAMS-B Karsten Borgwa rdt
E 186,098 spectra 12,110 spectra
2 563,826 labels 37,611 labels
@
(2]
8 . .. .
3 @ @ T‘ VIOLLIER Claudia Lang, Olivier Dubuis
8 DRIAMS-C DRIAMS-D

24,191 spectra 80,796 spectra

54,318 labels 112,545 labels

¢ KS A Kantonsspital Michael Oberle

Class 1 Class 0 Aarau
E Resistant Susceptible
ko] Intermediate Negative
% Positive .
E gu;tqillin: . F?SiSta;! 1 SX:Q"HW ‘ p Kantonsspltal Susanne Graf
< Cefepime: . Susceptible CZier:i:::e- 0 Baselland

[1] Weis C, Cuénod A, ... et Egli A, Nature Med 2021; [2] Weis C, et al. Bioinformatics 2020
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Spectra processing

a Data collection and filtering
"7 T MALDITOFMS T |
. | Intensity 1
! |
| 1
5 | |
I
— m'z 1
o I + L
Q l I . v
% 1 AMR profile g
I -
o ' oxacilin: i
— I Resistant R |
8 : Ceftriaxone: !
I Susceptible S :
| |
! 1
o DRIAMS-A DRIAMS-B
=
= 186,098 spectra 12,110 spectra
3 563,826 labels 37,611 labels
=
pa
Q
w
o
=
©
8 DRIAMS-C DRIAMS-D
24,191 spectra 80,796 spectra
54,318 labels 112,545 labels
c Class 1 Class 0
O Resistant Susceptible
ko] Intermediate Negative
E Positive
©
£
o]
o Oxacillin: Resistant Oxacillin: 1
= Ceftriaxone: Intermediate Ceftriaxone: 1
< Cefepime:  Susceptible Cefepime: 0

[1] Weis C, Cuénod A, ...

University of
Zurich
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Intensity Intensity
Varlance (3) Basellne
g: stablllzmg removal
@ (2) Smoothing
[
Q
el ' .
=3 Intensity Intensity
g 120,000
miz
(4) Intensity (5) Trimming
calibration
Intensity Bin size 3 Da
E’ 2,000 20,000
c -
c Intensity
o
mlz
2,000 20,000

Y

2]

Data splitting

Classification

Evaluation

Feature vector of length 6,000
for bin size 3 Da

et Egli A, Nature Med 2021, [2] Weis C, et al. Bioinformatics 2020

Interpretation

AMR prediction

Reduction to

antibiotic
— srl[ —_ Train
applicable

} Test

species

J

Logistic regression LightGBM

DHIAMS A

D ®®

Fivefold cross-validation hyperparameter search

v

AUROC
AUPRC
Specificity
Sensitivity

Feature Retrospective
contributions case study
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Prediction of AMR phenotypes directly from MALDI-TOF MS

— E-CEF (LightGBM) (ensemble)
—-= E-CEF (LightGBM) (single)

a ~— K.GEF (MLP) (ensembe) Prediction of susceptibility

K-CEF (MLP) (single)
— S-OXA (LightGBM) (ensemble)
0.80 - —*= S-OXA (LightGBM) (single)
0.75 AUROC
0.70 -
o S. aureus Oxacillin 0.8
© 0.65
5 . E. coli Ceftriaxon 0.74
05 - K. pneumoniae Ceftriaxon 0.74
0.50
e - Not perfect, but promissing

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
Number of samples

DRIAMS data set is public available.

Multiple studies confirmed findings [1-8]

[1] Weis C, Cuénod A, ... et Egli A. Nature Med 2021; [2] Ren M, Chen Q, et al. Scientific Reports, 2024; [3] Astudillo CA, Lopez-Cortes XA et al. Scientific Reports 2024; [4] Nguyen HA, Peleg AY,
et al. mSystems 2024; [5] Lopez-Cortes XA, Mariquez-Trocoso JM et al. Int J Mol Sci 2025; [6] De Waele G, Menschaert G, et al. Elife 2024; [7] Wang WY, Chui CF, et al. Int J Antimicrob Agents

2024;[8] Yu J, Lin HH et al. Int J Antimicrob Agents 2023

University of | Revive Webinar: Using Al for AMR
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Conclusion.

Time is critical for adequat and efficient antibiotic treatments.

- Traditional culture-based diagnostics takes time.

- Resistance mechanisms are diverse and require a high degree of knowledge.
- Value-based diagnostics = (high) impact for the patient.

—> Al has a huge potential

- LLMs can be used for a broad range of applications.

- Smart phone based apps can support AST interpretation.

- More sophisticated use is possible but requires large datasets for training.

... but again we need careful evaluation (step-by-step) - allowing ethical, legal and regulatory sound usage.

—> Stay critical regarding the usage of Al. Do not believe everything the Al tells you.

University of | Revive Webinar: Using Al for AMR 10/29/2025 | 31
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What comes next...?

\
Y > - .
. £ = '“a —> Regular and continuous
g '“‘ﬂ education is critical.
Iy —> Adaptation of curricula for
Past Presentand future lab technicians and microbiologists
* Cognitive knowledge Digital research & critical
. q thinkin . . .
Manuel skills e . > Itis very likely that in 10 years,
«  Good observation Data interpretation & defi l
. bioinformatics we CaI‘II‘IOt erine oursetwves
» Patience & carefulness .
2 el Flexibility & via knowledge.
SIS [SEEEC e interdisciplinary working
Communication skills
Quality management and
regulatory knowledge
Adaptability and resilience
Y,
Egli Andrea & Egli Adrian, LabMag 2025, in press
University of | Revive Webinar: Using Al for AMR 10/29/2025 | 32
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Regulatory space...

Most diagnostics labs are nowadays ISO 15189 accredited
In Europe, Al in healthcare is a tightly regulated space.

- IVDR

- Al act

All shown tools cannot be used for routine applications.
IVDR is a huge problem for academic labs and start ups.

There is innovation, but there is a valley of death for application.
Only large companies can handle the burden - we will run into a company dependency with Al tools.

—> How can we generate an environment in Europe, where diagnostic is value-based (for the patient) but the
regulatory burden does not kill the innovation?

University of | Revive Webinar: Using Al for AMR 10/29/2025 | 33
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Key messages

(D The key challenges in AMR are: Knowledge and speed.
(@ Image analysis is a low hanging fruit.

(® MALDI-TOF MS with Al makes huge progress, but will not replace standard
testing — it will provide early info.

(4 Everything outside of the lab, including patient data, is currently a tightly
regulated space.

(® Usage of Al has to be critically evaluated, but currently it is over regulated.

“The age of Al has started” Bill Gates 2022

University of | Revive Webinar: Using Al for AMR
Zurich
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Javier Fernandez Dominguez

Javier Fernandez Dominguez is co-founder and co-CEO at Pragmatech Al Solutions. A start up whose main
product is iAST, an Al-based software platform for antibiotic prescribing support that has obtained the CE
certification, becoming the first software of its kind to achieve this milestone.

Javier is a specialist in clinical microbiology with extensive experience in antibiotic resistance and applying
innovation in artificial intelligence to infectious diseases. Between 2016 and 2025, he led the antibiotic
susceptibility testing section at the Central University Hospital of Asturias (HUCA), was a founding member of the
hospital’s antimicrobial stewardship team, and served as principal investigator in antimicrobial resistance research
within the Translational Microbiology Group at ISPA (Health Research Institute of the Principality of Asturias). He
was also previously an adjunct professor at the University of Oviedo in Spain between 2022-2025.

Javier holds a degree in Pharmacy from the Complutense University of Madrid. He specialized in Clinical
Microbiology at HUCA and earned his PhD from the University of Oviedo, He has sat on the editorial boards of
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including two PRAN awards granted by the Spanish Agency of Medicines and the Ministry of Health.
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The challenge of antibiotic resistance

antibiotic resistance could result in:

\\ 10m COStlng Increase Increasein

fth hospital st

“. " deaths . £“66 \_ mortality SSPEESIEYS
. " by2050 trillion

GLOB AL A failure to address the problem of / @ / @ \

2 NEWS
A Third of Antibiotic Prescriptions are Just 3
Lolie =582
(=] ﬁ (=]
“Antibiotics are lifesaving = =
drugs, and if we continue down :
the road of inappropriate use Increase Increase
’ll lose th t rful " ' o
tool wo have to fiahe ife. of the N ~ of the associated

tool we have to fight life- .
threatening infections." Readmissions ; costs
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The challenge of errors in antibiotic therapy

Original Investigation

May 3, 2016

Prevalence of Inappropriate Antibiotic

Prescriptions Among US Ambulatory Care

Visits, 2010-2011

Katherine E. Fleming-Dutra, MD'; Adam L. Hersh, MD, PhDZ; Daniel J. Shapiro®; et al
» Author Affiliations | Article Information
JAMA. 2016;315(17):1864-1873. doi:10.1001/jama.2016.4151

THE LANCET
Infectious Diseases

Thisjournal ~ Journals  Publish  Clinical  Globalhealth ~ Multimedia  Events  About

¥, Download Full Issue

ARTICLES - Volume 21, Issue 2, P241-251, February 2021

Inappropriate empirical antibiotic therapy for bloodstream infections based on
discordant in-vitro susceptibilities: a retrospective cohort analysis of prevalence,
predictors, and mortality risk in US hospitals

Home > Intensive Care Medicine > Article

Epidemiology and outcomes of hospital-
acquired bloodstream infections in

intensive care unit patients: the EUROBACT-
p) |nternat|onal cohort study

al |

Percentage of patients receiving an adequate antimicrobial treatment

Enterobacterales, Pseudomonas s5p. and Acinefobacter sp., n=1421 patients
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Causes of errors in antibiotic therapy: 1. Delayed microbiological results

24 hours 48 hours 72 hours

>

Conventional AST Culture positivity Isolated colonies m

Rapid Phenotypic AST Culture positivity
Rapid antibiograms

Rapid Genotypic AST
(positive cultures)

Culture positivity

Rapid GenOtypic AST Traditional antibiograms @
(direct specimens)
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Causes of errors in antibiotic therapy: 2. Variety in local ecology

n AMP | AMC CRM CTX ap SKT GM TOB FOS5 NTF
Escherichia coll sog | 410 | 21 | 784 | 813 | 02 | eel | =88 | ®e0 | 950 | 988
Escherichia coll BLEE 103 00 70,9 0,0 0.0 16,5 320 65,1 50,49 B35S 97,1
Kiebsieila preumonioe 143 R 707 | 765 | 867 | e85 | E2s | 951 | s&E NT EEL
Klebsiella preumonioe BLEE 18 R ss6 | oo | oo | 18 | 167 | 722 | 4as | WE | s&7
Proteus mirabilis 136 | 574 | B16 | 919 | 933 | 588 | 669 | 721 | 662 NT R
Pseudomonas oerugingsa 155 R R ] ] 8,7 R g72 | #a7 NT R
Enterobocter closcos complex a7 R R ] 681 | 787 | BO9 | 915 | 915 NT 50,3
Kiebsieila oxytoca a8 R go6 | @04 | 9sg | o3E | @am | 979 | o3 NT 91,7
Morganella morgani 56 R R R 750 | 571 | B43 | 839 | 821 NT R
Serratio marcescens 39 R R R 703 | 846 | B97 | 1000 | 667 NT R

n AMP | amC | cam | ek | ar | skt | &M | ToB | Fos | mTe
|&.r.mcuu colf 384 | 513 | 900 | 871 | =B5 | 721 | 78 | sop | 866 | 958 | =43
|El:.?ﬂdcﬁu colf BLEE 135 | o0 | Mo | 00 o0 | 140 | 331 | 689 | 484 | azy | @94
|M¢bm 574 ] 851 | &31 | 262 | 790 | BSE | 6 | o014 | NT | ERs
Klebsiells preumaniae BLEE pot ] 27 | o0 o0 | 120 | 213 | 627 | 413 | NT | &27
Proteus mirabilis 614 | 898 | 041 | ora | 643 | 640 | 746 | 670 [ MET R
Pseudomonas aeruginosa 161 R R R [ 87,6 R NT | @26 | WT R
Morganells morgenii o4 ] R R 72 | 628 | 648 | 77 | 851 | ME R
Enterobocter cloacoe complex 7 ] R R 71 | 857 | 3 | a5 | @35 | NT | Gos
Klebsialls axytoca E4 ] @87 | m2 | @71 | s2E | 87 | ona | o71 | MT | 1000
Gitrobacter freundii camplex 53 ] R R 755 [ 73 | 73 | %06 | %06 | NT | 1000
dtrobacter koseri &8 R g71 | =30 | 000 | 1000 | 1000 | 1000 | 1000 | NT | 285
Klebsiells voriicols 50 ] o40 | =0 | w000 | %20 | sen | 1000 | w00 | NT | 280
Klebsiells aerogenes 45 ] R R B89 | 933 | 1000 | 978 | 956 | NT [ E44
Brovidencio stuartii 35 ] R R 771 | &6 | E0p0 B B NT R

* Limited information

* Notwell known among prescribers

Clinical
B Infectious
(ool Diseases

Volume 69, Issue 6
15 September 2019

JOURNAL ARTICLE
The Importance of Cumulative Antibiograms in
Diagnostic Stewardship @

Javier Fernandez ™, Fernando Vazquez

Clinical Infectious Diseases, Volume 69, Issue 6, 15 September 2019, Pages 1086-1087,
https://doi.org/10.1093/cid/ciz082
Published: 30 January 2019
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Causes of errors in antibiotic therapy: 3. Limitations of evidence-based medicine in ID

Inclusion and exclusion criteria leave out a certain population

* Results applicable to populations not individuals

Thousands of uncontrolled variables: the microorganism, its virulence, its resistance...

Views 20,356 Citations 70  Altmetric 191

Viewpoint | ONLINE FIRST
June 26, 2013

Personalized Medicine vs Guideline-Based Medicine

Jeffrey J. Goldberger, MD, MBA; Alfred E. Buxton, MD

Goldberger, J. J., & Buxton, A. E. (2013). Personalized medicine vs guideline-based medicine. JAMA, 309(24), 2559-2560.
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Causes of errors in antibiotic therapy: 4. Errors in medical judgments

MEDICINE: SCIENCE/ART

P

PROBABILITY

EMPIRICISM

How Decision making is impacted by Noise and Bias

KNOWLEDGE INSPIRATION
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JAMA Network : — -
Figure. Antibiotic Prescribing by Hour of the Day

— JAMA Internal Medicine

A Antibiotics sometimes ¢ Overall(n=21867) O Antibiotics never
indicated (n=7544) indicated (n=14323)

RESEARCH LETTER 751

Time of Day and the Decision to Prescribe Antibiotics

%
i

Jeffrey A. Linder, MD, MPH
Jason N. Doctor, PhD

Mark W. Friedberg, MD, MPP
Harry Reyes Nieva, BA
Caroline Birks, MD

Daniella Meeker, PhD

Craig R. Fox, PhD D—E/D/,n g 4

Author Affiliations: Division of General Medicine and Primary Care, Brigham 25
and Women's Hospital, Boston, Massachusetts (Linder, Friedberg, Reyes Nieva);
Harvard Medical School, Boston, Massachusetts (Linder, Friedberg, Reyes
Nieva, Birks); Schaeffer Center for Health Policy and Economics, University of Hour of the Day

Southern California, Los Angeles (Doctor); RAND, Boston, Massachusetts

(Friedberg); Division of General Medicine, Massachusetts General Hospital, Diagnoses for which antibiotics are sometimes indicated were otitis media,

Boston (Birks); RAND, Santa Monica, California (Meeker); Anderson School of sinusitis, pneumonia, and streptococcal pharyngitis. Diagnoses for which
antibiotics are never indicated were acute bronchitis, nonspecific upper

Management, University of California, Los Angeles (Fox). respiratory infection, influenza, and nonstreptococcal pharyngitis. Linear trend

Ln
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{
\

Antibiotic Prescribing, %
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Al to predict antibiotic
1. Allows susceptibility and help 3. Allows combine

microbiological antibiotic prescription evidence-based

results (including medicine with a

AST) to be
anticipated and
predicted

personalized
approach

2. Allows
recommendations

4. Allows reduce

to be adapted to bias and noise

local ecology data
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Artificial Intelligence

Machine Learning

Deep Learr"ng A subset of Al that

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines

like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The
vast amounts of data. category includes
deep learning

The Future Computed: Artificial by Microsoft Corporation
hitps://www.devacademy.es/

Any technique that
enables computers
to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(includingdeep
learning)
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Al algorithms to predict antibiotic resistance
Table 1. Performance of machine learning across different studies in predicting antibiotic susceptibility patterns.
Authors Year of Publication Medical Setting Geographical Setting Input Data ML Algorithms
Goodman et al. [27] 2016 Hospital admissions UsA Blood cultures/AST Recursive partitioning, DT
Vﬂ@::ﬁ‘;g]lﬂmf‘ 2017 Hospital admissions USA EHR data/Blood cultures/AST Recursive partitioning, DT
Sousa et al. [28] 2019 Hospital admissions Spain Clinical/ diu“llt"fr:‘sl':‘,}iggm’ Bleod DT
Moran et al. [20] 2020 Hmpl;;mﬁzﬁ and UK Blood /urine cultures XGBoost
Feretzakis et al. [33] 2020 Medical wards Greece Demographics/Cultures/ AST/Bacterial MLR
Gram stain/ Type of sample
Feretzakis et al. [34] 2020 Intensive Care Unit Greece Demographics/Cultures/AST/Bacterial | o pp \ N Jag, MLP
: Gram stain/ Type of sample T oI5
Feretzakis et al. [35] 2021 Intensive Care Unit Greece Demugraphicsf‘Cultums,’AST,"Bacterial JRip, RF, MLF, Class. Regr,
Gram stain/Type of sample REPTres
Martinez-Agiiero . . . Demographics /Clinical data/Type of g
etal. [36] 2019 Intensive Care Unit Spain sample/Cultures/ AST LR, k-NN, DT, EE, MLP
Dl;:umgrapl'd;;]ifledlca:on, vital sign,
McGuire et al. [5] 2021 Hospital admissions UsA bﬂ;;m biling ﬁﬁiﬁ?i‘fy"ﬁfi"m’ XGBoost
(67 features)
P“;“’:'I'F’[é’:}_‘]:hﬂ 2021 Intensive Care Unit Spain EHR data LR, DT, RE, XGBoost, MLP
Garcia-Vidal et al. 2021 FN Hematological Pati Spai EHR d RF, GBM, XG GLM
[ 311 ematological Patients pain ata , . Boost,
Henderson et al. . PLR, naive Bayes, gradient
130 2022 HIV patients USA EHR data boosting, SVM, RF

Sakagianni A, et al. Using Machine Learning to Predict Antimicrobial Resistance-A Literature Review. Anfibiotics (Basel). 2023 Feb 24;12(3):452. doi: 10.3390/antibiotics12030452.
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Al algorithms to predict antibiotic resistance: iAST® (Pragmatech Al Solutions)

Bacteria: local
epidemiology
and resistance

Neil=lalilile
literature

asiast

ARTIFICIAL
INTELLIGENCE

Patient

Therapeutic
guidelines

Liiast  Riiast  ksiast

Patient Preliminary _Definitive
evaluation microbiological microbiological
results results
b4 24 h o
3.4
EMPIRIC SEMITARGETED TARGETED
THERAPY THERAPY THERAPY

g DE SANIDAD NCPS&=sEr,

iAST® is a class lla medical device and is in the marketing approval phase by the AEMPS after a successful clinical trial
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IAST® clinical evaluation

] AMERICAN AntimlcrOblal Agents ANT|MICROB|AL STEWARDSHIP La AEMPS anuncia los ganadores de la IV edicién de los premios del Plan Nacicnal frente a la Resistencia a
L SOCIETY FOR October 2024 Volume 68 Issue 10 e00777-24 los Antibiéticos
— MICROBIOLOGY ar]d Chemotherapy https://doi.org/10.1128/aac.00777-24

EVIAST Project: Clinical evaluation of iIAST®, presented by
Pragmatech Al Soluctions S.L., in the category of "Best initiative in
surveillance and control of antibiotic consumption and resistance in
the field of human health".

Retrospective validation study of a machine learning-
based software for empirical and organism-targeted
antibiotic therapy selection

Maria Isabel Tejeda’, Javier Fernandez (15 2345, Pablo Valledor?, Cristina Almirall®, José
Barberan'7, Santiago Romero-Brufau () 28:°

!Infectious Diseases Unit, Hospital Universitario HM Monteprincipe, Madrid, Spain

2Research and Innovation Department, Pragmatech Al Solutions, Oviedo, Spain

3Microbiology Department, Hospital Universitario Central de Asturias, Oviedo, Spain

4I‘\r‘li:;rc:uk)iolc:»gg.f and Infectious Pathology, ISPA, Oviedo, Spain

®Functional Biology Department, Universidad de Oviedo, Oviedo, Spain

E3Departmem of Laboratory Medicine, HM Hospitales, Madrid, Spain

"HMm Faculty of Health Sciences, University Camilo Jose Cela, Madrid, Spain

8Depar‘tmem of Otorhinolaryngology—Head & Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
9DE![:Jartment of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston,
Massachusetts, USA

Tejeda M|, Ferndndez J, Valledor P, Almirall C, Barberdn J, Romero-Brufau S. 0. Retrospective validation study of a
machine learning-based software for empirical and organism-targeted antibiotic therapy selection. Antimicrob
Agents Chemother 0:e00777-24. https://doi.org/10.1128/aac.00777-24
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Historical dataset, patient antibiograms. Jan-Dec 2022 ° ® o o °
(r=27,531) IAST® clinical evaluation
£
E ¥
E Creasalication CLINICAL INVESTIGATION
& (n=24,770)
y L MODEL PARAMETERIZATION
WITH LOCAL DATA
Training dataset Validation dataset .
_ . Infection cases
{n=18,577) (n=6,193) (n=325)
_ | ﬂ ot
] Testing dataset. Jan-Feb 2023 Iv REVIEW SIMULATE -
ﬁ (n=2,761)
= Antibiotic prescribed by Antibiotic recommended
responsible physician by iAST® Data from

27,531
tient
Initial Random Sample. Feb-Dec 2023 0, © " panents
n=325 o O]
( ]I ¥
Comparison with final

o Exclusions antibiogram results
(n=3)

¥

Controlled clinical trial

Final patient cohort
(n=322)

Tejeda M|, Ferndndez J, Valledor P, Almirall C, Barberdn J, Romero-Brufau S. 0. Retrospective validation study of a machine learning-based software for empirical and organism-targeted antibiotic therapy selection. Antimicrob
Agents Chemother 0:e00777-24. https://doi.org/10.1128/aac.00777-24
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True Positive Rate
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IAST® model performance metrics
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Validation dataset

* Precision: 97%
* Recall (sensitivity): 97%
* Logloss:0.143
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Thresholds

Testing dataset

* Precision: 97%
* Recall (sensitivity): 97%
* Logloss:0.148

TABLE 1 Main features of patients and infections included in the study

Characteristic Value
Age (mean) 68.87
Gender
Femnale 136 (42.24)
Male 186 (57.76)

Hospitalization ward
Anesthesia/postoperative intensive care unit
Gastroenterol eneral surger

Hematology

eurology/neurcsurgery
Oncology
Orthopedics/traumatology

Others
Bone and joint infection
Gastrointestinal infection
Lower respiratory system infection”
Reproductive tract infection
Skin and soft tissue infection
Surgical site infection

1(0.49)

21(0.99)
110.49)

87 (27.02)
6 (6.89)
7 (8.05)
2(2.29)
2(2.29)
42 (48.28)
28(32.18)

Tejeda M|, Fernandez J, Valledor P, Almirall C, Barberan J, Romero-Brufau S. 0. Retrospective validation study of a machine learning-based software for empirical and organism-targeted antibiotic therapy selection. Antimicrob
Agents Chemother 0:00777-24. https://doi.org/10.1128/aac.00777-24
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iIAST® was shown to
reduce overall
medical errors in
empirical treatment
from 31.1% to 8.9%

Tejeda M|, Fernandez J, Valledor P, Almirall C, Barberan J, Romero-Brufau S. 0. Retrospective validation study of a machine learning-based software for empirical and organism-targeted antibiotic therapy selection. Antimicrob

Site of
infection

Doctor prescription

1st iAST® choice
2nd iAST® choice

3rd iAST® choice

Doctor prescription
1st iAST® choice
2nd iAST® choice

3rd iAST® choice

Agents Chemother 0:00777-24. https://doi.org/10.1128/aac.00777-24

B

Bacteremia / Sepsis
n =93

65 (69.9%)

87 (93.5%) (p<0.001)
88 (94.6%) (p<0.001)
84 (90.3%) (p<0.001)

78 (83.9%)

90 (96.8%) (p=0.006)
88 (94.6%) (p=0.033)
82 (88.2%) (p=0.526)

Patients included
n=325

3 Screen failures!

‘ &

Urinary tract infection
n=73

56 (76.7%)

66 (90.4%) (p=0.044)
67 (91.8%) (p=0.023)

70 (95.9%) (p=0.002)

65 (89.0%)
71(97.3%) (p=0.101)
68 (93.2%) (p=0.561)

67 (91.8%) (p=0.779)

o

Empiric therapy® achievement rate

Semi-targeted therapy* achievement rate

o

c !
Pneumonia [ VAT
n =69

41 (59.4%)

61 (88.4%) (p<0.001)
58 (84.1%) (p=0.002)
60 (87.0%) (p<0.001)

51 (73.9%)
68 (98.6%) (p<0.001)
63 (91.3%) (p=0.013)

62 (89.9%) (p=0.027)

% W,

%,

Other infections?
n =87

77 (88.5%)
87 (98.9%) (p=0.013)
84 (96.6%) (p=0.084)

82 (95.4%) (p=0.163)

.

The figure shows the percentages of success of the physicians and of iAST® (first three recommendations of the ranking) for each type of
infection in empirical and semi-targeted treatment, with the difference being statistically significant (p<0.001) in most cases.
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THE 1ST OPTION OF
|IAST® REDUCES THE
WATCH FROM 80%
TO 55% AND
INCREASES ACCESS
FROM 12% TO 32%

Tejeda M|, Fernandez J, Valledor P, Almirall C, Barberan J, Romero-Brufau S. 0. Retrospective validation study of a machine learning-based software for empirical and organism-targeted antibiotic therapy selection. Antimicrob

Agents Chemother 0:00777-24. https://doi. org/10.1128/aac.00777-24

Percentage (%)

AWaRE classification analysis for Empiric Therapy

100
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AWaRE classification analysis for Organism-targeted Therapy

* *
I I*

Aware

. Access
Watch

. Reserve

IAST_Rank! AST_Rank2 IAST_Rank3 Dactor AST_Rank1 AST_Rank2 WAST_Rank3
Models Models
Empirical Therapy (n=235")
AWaRE Doctor iAST, p-value iAST, p-value iAST, p-value
Access 29 (12.3%) 76 (32.3%)  <0.001 74 (31.5%)  <0.001 81(34.5%) <0.001
Watch 189 (80.4%) 130 (55.3%) <0.001 116 (49.4%) <0.001 102 (43.4%) <0.001
Reserve 17 (7.23%) 29 (12.3%)  0.077 45(19.1%)  <0.001 52(22.1%)  <0.001
Organism-targeted Therapy (n=322')

AWaRE Doctor iAST, p-value iAST, p-value iAST, p-value
Access 43 (13.4%) 69(214%) 0.014 118 (36.6%) <0.001 138 (43.0%) <0.001
Watch 213 (66.1%) 175 (54.3%)  0.054 142 (44.1%) <0.001 113(35.2%) <0.001
Reserve 66 (20.5%) 78(24.2%)  0.317 62(19.3%) 0.724 70(21.8%)  0.732


https://doi.org/10.1128/aac.00777-24
https://doi.org/10.1128/aac.00777-24
https://doi.org/10.1128/aac.00777-24

‘& REVIVE Using artificial intelligence to analyse and predict susceptibility to antimicrobials

by GAROP

IAST® features

% 1. EMPIRIC ANTIBIOTIC THERAPY

ane 2. SEMI-TARGETED ANTIBIOTIC
p THERAPY
\ Y U

&

A

A

3. PRESCRIPTION ALERTS

;..ll 4. CUMULATIVE AST REPORTS

.: 5. INCIDENCE DENSITY MDR
anll BACTERIA

® || 6.CONSUMPTION MONITORING
anll (DDD)

® || 7.CONSUMPTION MONITORING
anll (DoT)

asicist
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Conclusions

The mathematical performance metrics of the iIAST® model have exhibited robust values,
surpassing those of any other published algorithm to date.

Clinical research conducted has demonstrated that iIAST © can significantly mitigate
physician errors in empirical and semi-targeted antibiotic therapy, while concurrently
fostering antimicrobial stewardship.

Reducing errors in early antibiotic therapy holds the potential for enhanced infection
outcomes, cost savings within healthcare systems, and combating antibiotic resistance.

Further prospective studies are warranted to corroborate IAST® performance across
diverse epidemiological settings and to quantitatively assess its benefits.
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A Flaw in Human Judgment

DANIEL
KAHNEMAN

OLIVIER
SIBONY

CASS R.
SUNSTEIN

HANKS

Javier Fernandez Dominguez, PharmD, PhD “Most people are surprised to learn that the accuracy of
Founder and COCEO PragmateCh AI SOlUtiOﬂS their predictive judgments is not only low, but also inferior

to that of formulas. Even simple models built from limited
data, or simple rules that can be written on a napkin,
consistently outperform human judges. The fundamental

aadvantage of rules and models is that they are noise-

pragmatech..

it free. [..] It is difficult for us to imagine that simple rules

applied in an almost automatic way are often more

exact than we are.”

Daniel Kahneman
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Questions

Please submit your
questions through the box
provided after clicking the
‘questions’ button. We will
review all questions and
respond to as many as
possible after the
presentation.

If your question is

addressed to a specific No questions et
speaker, please include

their name when

submitting the question.
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Moderator: Adrian Egli Javier Fernandez
Margo Diricks Director, Institute of Dominguez
Postdoctoral researcher, Medical Microbiology, Co-founder and co-CEO,
Research Center Borstel — University of Zurich Pragmatech Al Solutions

Leibniz Lung Center (Germany) (Switzerland) (Spain)
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The next REVIVE webinar will be
announced soon!

Be the first to hear the latest REVIVE updates
o Onthe REVIVE website (revive.gardp.org/webinars)

o Subscribe to our newsletter

o On X (@gardp_amr) and LinkedIn



Pathways to
Antimicrobial
Clinical Efficacy

2025 Antibacterial Therapeutics Funding Round PACE

Up to £6m initially

Aim to provide participants with

available tO Support funding and support that

secures delivery of key data for

u p to e i g ht p rOj ects onward development and

investment

focused on developing new antibacterial
treatments for the most threatening microbes and

resistance mechanisms The portfolio will be actively

managed. Projects will receive
support and advice from the
PACE team

Up to £1M per project & 2 years in length

Innovative, higher risk projects of smaller scales
are highly encouraged to apply

Deadline for Eol submission: 23:59 (GMT) for full details of scope and to
on 5 November apply.
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